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Project Goal @

1 Elucidate how solvents impact ionomer dispersion morphology
thus changing electrode structures and performance

1 Design light and heavy-duty fuel cell MEASs that are mechanically
and chemically durable

] Establish catalyst ink property-electrode structure-MEA
performance correlation

1 Develop processable and scalable MEA fabrication platforms

1 Commercialize MEAs with enhanced durabillity via roll-to-roll
(R2R) production



Project Overview
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Contributors

Giner: Natalie Macauley,
Shirley Zhong, and Hui Xu

LANL: Dr. Yu-Seung Kim (sub.)

Timeline
Project Start Date: 8/27/2018
Project End Date: 8/26/2021

Budget NREL: Dr. Scott Mauger (sub.)
Total Project Value UConn: Prof. Jasnha Jankovic
- Phase 11B: $999,912 (collaborator)

- Spent: $ 893,529
Project Nature

Barriers Addressed DOE Technology Transfer Opportunity

PEM fuel cell and electrolyzer Project (SBIR-TTO) from LANL
performance and durability



Jﬁ; Alamos Relevance

Q lonomer is an important component of PEM fuel cells, which may lead to thed = S Eriylne gl it partids
enhanced FC performance and durability to meet DOE FC lifetime targets B 55 oindereng; 370A s 2

O Solvents impact ionomer morphology and interactions with catalysts thus 100 28 %% Sohent volme acion: 042
changing electrode performance and durability o000 4L, ==l | il

O Non-aqueous ionomer dispersion developed at LANL can enhance - ;| ° Radius () MN&%“
electrode durability = Water/2 propan (1:3)

U Scaling up the ionomer dispersion process (roll-to-roll) will lower the cost of :é SANS g:?\;" R
these durable gas diffusion electrodes, leading to a commercial product s 7 o <+ h

O SANS experiments indicate that the dispersion particle size of Nafion in Weter 2 propancl| g ) 87
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Q At high water content, mimicking the last stage of evaporation, the particle o 1 Y o
size is > 200 nm with fuzzy particles 0.01 : r ﬂ.\ .{QKNL e

O Nafion particle in ethylene glycol is elongated cylinder shape at 2.5 wt.% - aky SE e |

U Ongoing investigation with different solvent systems and Aquivion ionomer
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Mass activity >0.44 09 \tar US Pat 7981310
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IR-free European Patent s 8236207, 834268
0066369 >200 am P
L .. .. + Singhe sclvent system
Loss in initial activity % mass activity loss <40 RS
+ Water based multiple solvent system * Costeflective processing requires lower
5 A temperature (< 120°C) & ambient pressure
2 + Expensive processing: requires high temperature (> : /
Performance Loss @0.8 A/cm mV <30 200°C)& pressure (> 1000 psi) - Small and uniform particle suspension: particie
+ Large and non-uniform particle suspension: particle size (2.2 x 15 nen cylinder)
MEA performance 0.8V mA/cm2 800 mV > size (hydrodynamic radius: 200 — 400 nm) + Preduces tough membrane: toughness 10 MPa
P @ geo @ 300 - Produces brittle membrane: toughness ~ 0.001 MPa (> 4 crders of magnitude differencell)
+ Produces less stable electrode: cell voltage loss + Produces stable electrode: cell voRage loss after
MEA performance @ Rated power mwW/cmz,,, =>1000 after durabiliy test 40-90 mV durabiity test O mV
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Technical Approach m

O Correlate catalyst ink properties with electrode Rheometer:
structure and fuel cell performance Catalyst
a ldentify MEA improvement pathways toward roll-to-roll e
(R2R) manufacturing methods and full MEA
commercialization
- Ink characterization: Rheology, Zeta potential,
Particle size analysis
- MEA Performance and Durability
- Microstructure characterization: SEM & TEM Microscopy:
o _ _ _ Electrode
- Commercialization via R2R production Structures
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Fuel Cell and
Electrolyzer

Commerciall&\' b ="z = 5 Performance
Coating | | 1 ‘




Solvent Impact on Electrode Morphology

Close-up of Fresh CCM Characterization
Sample -

IPA Nafion in 2-propanol/iwater
NPA Nafion in 1-propanol/iwater
EG Nafion in ethylene glycol
BUT Nafion in butanediol

L Solvent has significant impact on electrode microstructure

* Better lonomer and Pt distribution with EG and BUT
* Smaller secondary pores with EG and BUT

* Likely associated with higher elastic and viscous components of
catalyst inks

O Multiple solvents were initially investigated for their impact on cathode
durability: IPA, NPA, EG, and BUT

0 EG and BUT had better durability than IPA and NPA in 2020 Work
: * Continued investigations with EG in 2021
Karren More, ORNL * Moved to PtCo catalyst, GDEs and R2R




Accomplishment: Catalyst Ink Optimization
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0.1 mg/cm? Pt Cathode Catalyst
Ink Composition

TKK TEC36F32 PtCo catalyst

5 wt.% N212 in EG ionomer

20 wt.% D2021 Nafion

I/C of 0.9

Meyer rod coating on GDL
Freudenberg H23C8

Dried on hot plate 90 °C 1h

5 days in vacuum oven at 150 °C

Hot pressed to commercial 0.2
mg/cm? Pt anode and N211

1 Ball milling time was determined by stable viscosity and lowest zeta V: 3 days for NPA and 5 days for EG

= |nk Viscosity gradually increased with mixing time — coating shear rate is ~ 100 s!
= Agglomerate size and Zeta potential gradually decreased with mixing time as ink stabilized



Accomplishment: Coating EG ink on GDL m
I-C=0.9_N211_0.10mgcm?,80C,100%RH,

H2/AIR, STOICH 1.5]1.8 150kPa EG ink high contact angle on GDL
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. Shifting from CCM to GDE for viable commercialization

) Tested coating NPA inks on various GDLs: 29 BC, 22BB SGL and Freudenberg H23C8
1 EG ink did not coat GDLs due to high contact angle of ~155°

1 Air plasma treatment enabled GDL coating at Giner

1 Applied Nafion overspray to GDE and hot pressed GDEs to half anode CCM
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Accomplishment: CCM

vsS. GDE Performance m
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J EG CCM performance matches performance of NPA CCMs

1 EG CCMs perform better with a Nafion overspray

1 EG GDEs exceed the performance of EG CCMs and NPA GDEs

1 EG GDEs have better performance in mass transport region than NPA GDEs
= Both EG and NPA GDEs have a Nafion Overspray



Voltage (V)

Oxygen and Low RH
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0 EG GDEs either match or outperform NPA GDEs
- 80 °C, 100% RH, 150kPa in H,/O,
-+ 80 °C, 40% RH, 150kPa in H,/Air
- 80 °C, 100% RH 250kPa in H,/Air

Performance
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MA (A/mgPt)

Accomplishment: CCM & GDE Durability

Voltage Loss @ 0.8 A/cm? @
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Voltage Loss @ 0.8 A/cm?

72mV  91mV

BOL EOL
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Mass Activity @ 0.9V

BOL EOL

0 Giner’s EG based GDEs are more durable than NPA GDEs

Voltage (V)
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0.6-0.95V
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26 MV 01myv
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GDE

Mass Activity@ 0.9V

B EG GDE

BOL

B NPA GDE

11%

47%

EOL

lon Chromatography was used
to evaluate Fluoride Emission
Rate from MEA with GDE and

hydrocarbon membrane.

Volume (L) x Concentration(ppm)

FER = Time (h) x Area (cm?)
Solvent Cathode FER
(ng/h-cm?)
NPA 0.0034
EG 0.0025

2 At 0.8 A/cm? the EG GDE lost 26 mV vs. 101 mV for NPA GDE after 30K AST
0 The EG and NPA GDE lost 11% and 47% of initial mass activity, respectively 11



Accomplishment: Ink Coating Scale-up

I

#30 rod left, #60 right. h #60 rod initial test sample #30 rod initial test sample

Red boxes indicate XRF loading measurement
region (115 °C)

1 As-received pre-mixed EG ink was ball milled at ~ 80 rpm for 5 days at ambient temperature
] Two test coatings were made using #30 and #60 Meyer rods
1 Samples suspended in NREL's convective R2R oven at 115 °C to simulate “in operando” conditions
1 Cracking observed with # 60 rod vs. # 30 rod is in line with the critical crack thickness concept
= Rapid evaporation of solvent through catalyst layer

O Loadings via XRF with spatial COV% for 3X3 grid (red boxes)
= #30 sample: 0.056 (+/-) 4.14% [mg Pt/ cm?]

%= N RE L = #60 sample: 0.109 (+/-) 14.3% [mg Pt / cm?]

[ { ) I}
|
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Impact of Ink Heating Temperature

Scale bar is 100 microns @

100 OC 120 OC 150 OC 100 °C 120 °C 150 °C

=

] Rod coated (#60 rod) six samples dried at three temperatures based on evaporation rate calculations
(100, 120 and 150 °C) for 120 seconds to simulate 1 m/min R2R operation

1 120 °C seems sufficient for properly loaded coatings

] 150+ °C gives good assurance for complete dryness

1 All micrographs taken at 200X with ring and coaxial top-down lighting

J Lower temperature (slower drying) produced more cracks

i iNREL 13
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Impact of Mixing Time

24 Hour Coating
120 °C for 2 min
0.1 mg/cm? Pt

200X

72 Hour Coating
120 °C for 2 min
0.1 mg/cm? Pt

100X

200X

i iNREL

NATIONAL RENEWABLE ENERGY LABORATORY

1 72h coating already had less cracking than 24h samples
1 120h was provided to Giner to eliminate cracking completely

= 4 GDEs dried at only 120 *C for 2 min

= 2 GDEs dried at 120 °C for 2 min then baked at 180 C for 5 min

14



NREL R2R EG GDE Performance

I-C=0.9_N211_0.10mg/cm?_80C_100%RH
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Drying GDEs at 120 °C yields better performance than at 150 °C (NREL1 > NREL2)

Boiling NREL GDEs in DI water to remove residual EG showed minor changes indicating low to no residual EG (NREL3 & 4)
1 and 5 day mixing resulted in poorer performance than 3 day mixing (NREL 5 < NREL6 < NREL 7&8)

NRELG6: mixed for 3 days, dried 2 min at 120 °C matched Giner’s GDE performance

Post bake at 180 °C for 5 min after baking at 120 °C for 2 min resulted in better performance(NREL 8 > NREL7)

LiNREL

NATIONAL RENEWABLE ENERGY LABORATORY

o o o0 0 O
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Responses to Previous Year Reviewers’ Comments

T @D

This project was not reviewed in 2020
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Team Collaborations/Project Management @

Institutions

Giner Inc. Catalyst ink design and characterization,
Hui Xu (PI), Natalia Macauley, Shirley Zhong  electrode fabrication, and cell testing

Los Alamos National Laboratory lonomer dispersion preparation and
Yu-Seung Kim (co-Pl), Gerie Purdy characterization

Roll to roll evaluation of EG based ink for gas

National Renewable Enerqgy Laboratory diffusion electrode fabrication

Scott Mauger (Co-Pl), Jason Pfelilsticker

University of Connecticut
Jasna Jankovic (collaborator), Sara Pedram

Electrode characterizations
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Remaining Barriers and Challenges @

0 EG-Based GDE fabrication using R2R at NREL was able to successfully
replicate Giner GDEs performance at small scale, but not durability

2 Differences in microstructure can lead to variations in durability

2 More advanced catalysts and membranes have not been adapted to
further enhance fuel cell performance

0 More aggressive accelerated stress tests under heavy-duty conditions
have not been completed

18

Any proposed future work is subject to change based on funding levels



Future Work

R —

2 Further develop best GDE fabrication practice w/ NREL

= Optimize solid content to reduce crack formation

o Reduce thickness of catalyst layer on GDL

= GDEs dried at <120 "C for <2 min
= Try slot die coating EG ink at NREL
= Crack free heavy-duty GDEs with 0.2 mg/cm? Pt
= Produce and test 100 cm? MEAS
2 Scale up assisted by a commercial coating company

2 Further work with OEM for GDE sale and commercialization

19

Any proposed future work is subject to change based on funding levels



Summary @

O Impact of non-agueous solvent on lonomer dispersion morphology, electrode
structure and fuel cell durability was studied
0 Efforts were shifted from CCMs to GDEs for viable commercialization

- Giner GDEs match CCMs for the performance
- Giner GDEs show improved durability over NPA GDEs

0 Collaborated with NREL to scale up GDEs using R2R Process

- Scale-up with ethylene glycol (EG) solvent is feasible
- Performance and durability improvement needed via ink optimization

O Reached out to fuel cell OEMs for sales

- Durability is highly favorable
- Need to be cost competitive

2 Acknowledgements
- Financial support from DOE SBIR/STTR Program under award #DE-SC0012049
- Program Manager: Ms. Donna Ho
- Dr. John Kopasz for project suggestions

20



Acknowledgements @

2 Financial support from DOE SBIR/STTR Program
under award #DE-SC0012049

- Program Manager: Ms. Donna Ho

Dr. John Kopasz at ANL for project suggestions

21



@D

Technical Backup and Additional
Information
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Technology Transfer Activities @

d Look into Potential End Users
- Ballard (Canada)
- Plug Power (New York)
- Nikola (Arizona)

2 Partial Feedback
- Long Durability (target has been met)
- Low Price: GDEs over CCMs;
R2R for automation
- Quiality Control (catalyst ink control)

23



Progress Toward DOE Targets

s —

O Met the following DOE 2020 performance and durability targets

DOE Fuel Cell Electrocatalyst and MEA Technical Targets

DOE PROJECT
CHARACTERISTIC UNITS TARGETS STATUS

A/mg PGM @ 900

Mass activit > 0.44
y mVIR free
Loss in initial catalytic activity % mass activity loss <40 17
Loss in perform?nce at 0.8 my <30 o5
Alcm
MEA performance
80°C, 150kPa, 100%RH, mA/cm? ., @ 800 mV = 300 316
STOICH
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Pt/C and lonomer Interaction w
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(a) Breakdown of core catalyst agglomeration

(b) lonomer re-conformation in various solvent blend

(c) lonomer adsorption onto catalyst particle surface

(d) lonomer re-conformation on particle surface

(e) Formation and breaking-up of flocculation 26



~=NREL RZ2R EG GDE Durability
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I-C=0.9_N211_0.10mg/cm?, 80C, 100%RH, H,/AIR, STOICH 1.5|1.8 150kPa, H23C8 EG
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0 NREL GDEs were subjected to the 30,000 Square Wave Accelerated Durability Test: 0.6- 0.95V
0 NREL GDE (R2R) has not matched Giner GDE (small roller coating) durability



INREL R2R EG GDE Durability @

Performance Loss Mass Activity
at 0.8 A/lcm? (A/mgp,)
EG GDE 30K BOL 30K Loss
NREL1 50 mV 0.60 0.34 43%
NREL2 95 mVv 0.74 0.22 70%
NREL3 56 mV 0.82 0.46 44%
NREL4 49 mV 0.70 0.39 44%
NREL6 56 mV 0.72 0.35 54%
Giner 26 mV 0.56 0.48 17%

2 NREL GDEs were subjected to the 30,000 Square Wave Accelerated Durability Test: 0.6-0.95V
0 NREL GDE (R2R) durability did not match Giner GDE (small roller coating) durability
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Rheology: Mixing PtCo Iink in NPA vs EG

T ED

NPA EG

Elastic and Viscous modulus versus Shear Stress Elastic and Viscous modulus versus Shear Strain
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=

Mixing time determined by stable viscosity: 3 days for NPA and 5 days for EG
J G’ Elastic modulus

J G” Viscous modulus

] Both increase with mixing time 29



Rheology Comparison

T ED

Giner Ink Rheology Comparison

100 ——Giner 1

—-o—Giner 2
~o—NREL (no pre-shear: up sweep)
NREL (pre-shear: down sweep)

[y
o

Viscosity [Pa-S]

[

0.05 0.5 5 50 500
Shear rate [1/s]

0 NREL measurements show ~3X more
viscous ink than Giner’s

O Increased viscosity and or higher yield
stress could have led to better coatability?

O Ink components were sent to NREL to

verify

30



