

Ionomer Dispersion Impact on Advanced Fuel Cell Performance and Durability

Hui Xu (PI)

Giner Inc. Newton, MA

Award DE-SC0012049

FC117

2021 Annual Merit Review and Peer Evaluation Meeting June 7-11, 2021

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Goal

- Elucidate how solvents impact ionomer dispersion morphology thus changing electrode structures and performance
- Design light and heavy-duty fuel cell MEAs that are mechanically and chemically durable
- Establish catalyst ink property-electrode structure-MEA performance correlation
- Develop processable and scalable MEA fabrication platforms
- Commercialize MEAs with enhanced durability via roll-to-roll (R2R) production

Project Overview

GINER

Timeline

- Project Start Date: 8/27/2018
- Project End Date: 8/26/2021

Budget

- Total Project Value
 - Phase IIB: \$999,912
 - Spent: \$ 893,529

Barriers Addressed

 PEM fuel cell and electrolyzer performance and durability

Contributors

- Giner: Natalie Macauley, Shirley Zhong, and Hui Xu
- LANL: Dr. Yu-Seung Kim (sub.)
- NREL: Dr. Scott Mauger (sub.)
- UConn: Prof. Jasna Jankovic (collaborator)

Project Nature

 DOE Technology Transfer Opportunity Project (SBIR-TTO) from LANL

Relevance

- Solvents impact ionomer morphology and interactions with catalysts thus changing electrode performance and durability
- Non-aqueous ionomer dispersion developed at LANL can enhance electrode durability
- □ Scaling up the ionomer dispersion process (roll-to-roll) will lower the cost of these durable gas diffusion electrodes, leading to a commercial product
- SANS experiments indicate that the dispersion particle size of Nafion in water/2-propanol increases with higher water composition
- At high water content, mimicking the last stage of evaporation, the particle size is > 200 nm with fuzzy particles
- □ Nafion particle in ethylene glycol is elongated cylinder shape at 2.5 wt.%
- Ongoing investigation with different solvent systems and Aquivion ionomer

CHARACTERISTIC	UNITS	2020 TARGETS
Mass activity	A/mg PGM @ 900 mV _{IR-free}	>0.44
Loss in initial activity	% mass activity loss	<40
Performance Loss @0.8 A/cm ²	mV	<30
MEA performance @ 0.8V	mA/cm² _{geo} @ 800 mV	≥300
MEA performance @ Rated power	mW/cm² _{geo}	≥1000

Water based multiple solvent system

Expensive processing: requires high temperature (> 200°C) & pressure (> 1000 psi) Large and non-uniform particle suspension: particle size (hydrodynamic radius: 200 – 400 nm)

Produces brittle membrane: toughness ~ 0.001 MPa Produces less stable electrode: cell voltage loss after durability test: 40-90 mV

Small and uniform particle suspension: particle size (2.2 x 15 nm cylinder)

- Produces tough membrane: toughness 10 MPa (> 4 orders of magnitude difference!!)
- Produces stable electrode: cell voltage loss after durability test: 0 mV

Technical Approach

- Correlate catalyst ink properties with electrode structure and fuel cell performance
- Identify MEA improvement pathways toward roll-to-roll (R2R) manufacturing methods and full MEA commercialization
 - Ink characterization: Rheology, Zeta potential, Particle size analysis
 - MEA Performance and Durability
 - Microstructure characterization: SEM & TEM
 - Commercialization via R2R production

Microscopy: Electrode Structures

Rheometer:

Catalyst Inks

Fuel Cell and Electrolyzer Performance

Solvent Impact on Electrode Morphology

Close-up of Fresh CCM Characterization

Karren More, ORNL

Sample Abbreviation	Description
IPA	Nafion in 2-propanol/water
NPA	Nafion in 1-propanol/water
EG	Nafion in ethylene glycol
BUT	Nafion in butanediol

- □ Solvent has significant impact on electrode microstructure
 - Better Ionomer and Pt distribution with EG and BUT
 - Smaller secondary pores with EG and BUT
 - Likely associated with higher elastic and viscous components of catalyst inks
- Multiple solvents were initially investigated for their impact on cathode durability: IPA, NPA, EG, and BUT
- **G** EG and BUT had better durability than IPA and NPA in 2020 Work
 - Continued investigations with EG in 2021
 - Moved to PtCo catalyst, GDEs and R2R

Accomplishment: Catalyst Ink Optimization

0.1 mg/cm² Pt Cathode Catalyst Ink Composition

- TKK TEC36F32 PtCo catalyst
- 5 wt.% N212 in EG ionomer
- 20 wt.% D2021 Nafion
- I/C of 0.9 •

-NPA 1D

-NPA 3D

-EG 1D

5D

2

— EG 3D

EG 5D

1.5

- Meyer rod coating on GDL
- Freudenberg H23C8
- Dried on hot plate 90 °C 1h
- 5 days in vacuum oven at 150 °C
- Hot pressed to commercial 0.2 mg/cm² Pt anode and N211

Ball milling time was determined by stable viscosity and lowest zeta V: 3 days for NPA and 5 days for EG

- **Ink Viscosity** gradually increased with mixing time coating shear rate is $\sim 100 \text{ s}^{-1}$
- Agglomerate size and Zeta potential gradually decreased with mixing time as ink stabilized

Accomplishment: Coating EG ink on GDL

EG ink high contact angle on GDL

- Shifting from CCM to GDE for viable commercialization
- Tested coating NPA inks on various GDLs: 29 BC, 22BB SGL and Freudenberg H23C8
- EG ink did not coat GDLs due to high contact angle of ~155°
- Air plasma treatment enabled GDL coating at Giner
- Applied Nafion overspray to GDE and hot pressed GDEs to half anode CCM

Accomplishment: CCM vs. GDE Performance

- □ EG CCM performance matches performance of NPA CCMs
- EG CCMs perform better with a Nafion overspray
- **EG GDEs exceed the performance of EG CCMs and NPA GDEs**
- □ EG GDEs have better performance in mass transport region than NPA GDEs
 - Both EG and NPA GDEs have a Nafion Overspray

Oxygen and Low RH Performance

EG GDEs either match or outperform NPA GDEs

- 80 °C, 100% RH, 150kPa in H₂/O₂
- 80 °C, 40% RH, 150kPa in H₂/Air
- 80 °C, 100% RH 250kPa in H_2 /Air

Accomplishment: CCM & GDE Durability

□ Giner's EG based GDEs are more durable than NPA GDEs

□ At 0.8 A/cm² the EG GDE lost 26 mV vs. 101 mV for NPA GDE after 30K AST

□ The EG and NPA GDE lost 11% and 47% of initial mass activity, respectively

Accomplishment: Ink Coating Scale-up

#30 rod left, #60 right. Red boxes indicate XRF loading measurement region (115 °C)

#60 rod initial test sample

#30 rod initial test sample

- □ As-received pre-mixed EG ink was ball milled at ~ 80 rpm for 5 days at ambient temperature
- □ Two test coatings were made using #30 and #60 Meyer rods
- □ Samples suspended in NREL's convective R2R oven at **115** °C to simulate "**in operando**" conditions
- Cracking observed with # 60 rod vs. # 30 rod is in line with the critical crack thickness concept
 - Rapid evaporation of solvent through catalyst layer
 - □ Loadings via XRF with spatial COV% for 3X3 grid (red boxes)
 - #30 sample: 0.056 (+/-) 4.14% [mg Pt / cm²]
 - #60 sample: 0.109 (+/-) 14.3% [mg Pt / cm²]

Impact of Ink Heating Temperature

Rod coated (#60 rod) six samples dried at three temperatures based on evaporation rate calculations (100, 120 and 150 °C) for **120 seconds** to simulate 1 m/min R2R operation

- □ 120 °C seems sufficient for properly loaded coatings
- □ 150+ °C gives good assurance for complete dryness
- All micrographs taken at 200X with ring and coaxial top-down lighting
- Lower temperature (slower drying) produced more cracks

Impact of Mixing Time

- **72h** coating already had less cracking than 24h samples
- □ 120h was provided to Giner to eliminate cracking completely
 - 4 GDEs dried at only 120 °C for 2 min
 - 2 GDEs dried at 120 °C for 2 min then baked at 180 C for 5 min

NREL R2R EG GDE Performance

- □ Drying GDEs at 120 °C yields better performance than at 150 °C (NREL1 > NREL2)
- Boiling NREL GDEs in DI water to remove residual EG showed minor changes indicating low to no residual EG (NREL3 & 4)
- □ 1 and 5 day mixing resulted in poorer performance than 3 day mixing (NREL 5 < NREL6 < NREL 7&8)
- □ NREL6: mixed for 3 days, dried 2 min at 120 °C matched Giner's GDE performance
- Post bake at 180 °C for 5 min after baking at 120 °C for 2 min resulted in better performance(NREL 8 > NREL7)

Responses to Previous Year Reviewers' Comments

This project was not reviewed in 2020

Team Collaborations/Project Management

Institutions	Roles
<u>Giner Inc.</u> Hui Xu (PI), Natalia Macauley, Shirley Zhong	Catalyst ink design and characterization, electrode fabrication, and cell testing
Los Alamos National Laboratory Yu-Seung Kim (co-PI), Gerie Purdy	Ionomer dispersion preparation and characterization
National Renewable Energy Laboratory Scott Mauger (Co-PI), Jason Pfeilsticker	Roll to roll evaluation of EG based ink for gas diffusion electrode fabrication
<u>University of Connecticut</u> Jasna Jankovic (collaborator), Sara Pedram	Electrode characterizations

Remaining Barriers and Challenges

EG-Based GDE fabrication using R2R at NREL was able to successfully replicate Giner GDEs performance at small scale, but not durability

Differences in microstructure can lead to variations in durability

More advanced catalysts and membranes have not been adapted to further enhance fuel cell performance

More aggressive accelerated stress tests under heavy-duty conditions have not been completed

Future Work

GINER

Further develop best GDE fabrication practice w/ NREL

- Optimize solid content to reduce crack formation
 - Reduce thickness of catalyst layer on GDL
- GDEs dried at <120 °C for <2 min
- Try slot die coating EG ink at NREL
- Crack free heavy-duty GDEs with 0.2 mg/cm² Pt
- Produce and test 100 cm² MEAs
- □ Scale up assisted by a commercial coating company
- □ Further work with OEM for GDE sale and commercialization

Summary

- Impact of non-aqueous solvent on lonomer dispersion morphology, electrode structure and fuel cell durability was studied
- Efforts were shifted from CCMs to GDEs for viable commercialization
 - Giner GDEs match CCMs for the performance
 - Giner GDEs show improved durability over NPA GDEs
- Collaborated with NREL to scale up GDEs using R2R Process
 - Scale-up with ethylene glycol (EG) solvent is feasible
 - Performance and durability improvement needed via ink optimization
- Reached out to fuel cell OEMs for sales
 - Durability is highly favorable
 - Need to be cost competitive
- Acknowledgements
 - Financial support from DOE SBIR/STTR Program under award #DE-SC0012049
 - Program Manager: Ms. Donna Ho
 - Dr. John Kopasz for project suggestions

- Financial support from DOE SBIR/STTR Program under award #DE-SC0012049
- Program Manager: Ms. Donna Ho
- Dr. John Kopasz at ANL for project suggestions

Technical Backup and Additional Information

Technology Transfer Activities

Look into Potential End Users

- Ballard (Canada)
- Plug Power (New York)
- Nikola (Arizona)

Partial Feedback

- Long Durability (target has been met)
- Low Price: GDEs over CCMs;

R2R for automation

- Quality Control (catalyst ink control)

Progress Toward DOE Targets

□ Met the following DOE 2020 performance and durability targets

DOE Fuel Cell Electrocatalyst and MEA Technical Targets

CHARACTERISTIC	UNITS	DOE TARGETS	PROJECT STATUS
Mass activity	A/mg PGM @ 900 mV _{IR-free}	> 0.44	0.82
Loss in initial catalytic activity	% mass activity loss	< 40	17
Loss in performance at 0.8 A/cm ²	mV	< 30	25
MEA performance 80ºC, 150kPa, 100%RH, STOICH	mA/cm² _{geo} @ 800 mV	≥ 300	316

Publications and Presentations

Chao, Lei ; Yang, Fan ; Macauley, Natalia; Spinetta , Magali; Purdy, Geraldine; Jankovic, Jasna; Cullen, David; More, Karren; Kim, Yu; Xu, Hui, "Impact of Catalyst Ink Dispersing Solvent on PEM Fuel Cell Performance and Durability", *J. Electrochem. Soc.*, 168, 044517 (2021)

Pt/C and Ionomer Interaction

(a)

(b)

(C)

(d)

(e)

(a) Breakdown of core catalyst agglomeration
(b) Ionomer re-conformation in various solvent blend
(c) Ionomer adsorption onto catalyst particle surface
(d) Ionomer re-conformation on particle surface
(e) Formation and breaking-up of flocculation

R2R EG GDE Durability

I-C=0.9_N211_0.10mg/cm², 80C, 100%RH, H₂/AIR, STOICH 1.5|1.8 150kPa, H23C8 EG

NREL GDEs were subjected to the 30,000 Square Wave Accelerated Durability Test: 0.6- 0.95V
 NREL GDE (R2R) has not matched Giner GDE (small roller coating) durability

R2R EG GDE Durability

Performance Loss at 0.8 A/cm ²		Mass Activity (A/mg _{Pt})		
EG GDE	30K	BOL	30K	Loss
NREL1	50 mV	0.60	0.34	43%
NREL2	95 mV	0.74	0.22	70%
NREL3	56 mV	0.82	0.46	44%
NREL4	49 mV	0.70	0.39	44%
NREL6	56 mV	0.72	0.35	54%
Giner	26 mV	0.56	0.48	17%

NREL GDEs were subjected to the 30,000 Square Wave Accelerated Durability Test: 0.6-0.95V
 NREL GDE (R2R) durability did not match Giner GDE (small roller coating) durability

Rheology: Mixing PtCo ink in NPA vs EG

NPA

EG

Mixing time determined by stable viscosity: 3 days for NPA and 5 days for EG

- G' Elastic modulus
- G" Viscous modulus
- Both increase with mixing time

Rheology Comparison

NREL measurements show ~3X more viscous ink than Giner's
 Increased viscosity and or higher yield stress could have led to better coatability?
 Ink components were sent to NREL to verify