This presentation does not contain any proprietary, confidential, or otherwise restricted information

Hydrogen Production and Delivery Analysis

Brian D. James (SA) Daniel A. DeSantis (SA) Jennie M. Huya-Kouadio (SA) Cassidy Houchins (SA) Yaset Acevedo (SA) Genevieve Saur (NREL) 7 June 2021

Project ID: P102 Award No. DE-EE0007602

Project Goal

- Conduct <u>technoeconomic analysis</u> to evaluate the cost to produce H₂ (\$/kg) through <u>various technological production pathways</u> (i.e. electrolysis or photoelectrochemical water splitting) by using Design for Manufacture and Assembly (DFMA), heat & mass balance, and <u>H2 Analysis (H2A) models</u>.
- Estimate the cost of H₂ based on state-of-the-art technology at <u>distributed and</u> central production facilities (1.5-50 tons per day) and <u>measure the cost impact</u> of technological improvements in H₂ production technologies.
- Evaluate the <u>cost drivers</u> and <u>recommend</u> to DOE <u>the technical areas needing</u> <u>improvement</u> for each technology.

Overview

Timeline

- Project start date: 10/1/2016
- Project end date: 9/30/2021
- Percent complete: ~90% of project

Budget

- Total Funding Spent
 - ~\$780K SA (though Mar 2021)
- Total DOE Project Value:
 - ~\$900k SA
- Cost Share Percentage: 0% (not required for analysis projects)

Barriers

- Hydrogen (H₂) Generation by Water
 Electrolysis
 - F: Capital Cost
 - G: System Efficiency and Electricity Cost
 - K: Manufacturing

Partners

- National Renewable Energy Laboratory (NREL)
- Argonne National Laboratory (ANL)

Collaborators (unpaid)

 7 Electrolyzer companies and research groups (names not included in public documents)

Relevance and Impact

- Investigates production and delivery <u>pathways selected/suggested</u> <u>by DOE</u> that are relevant, timely, and of value to FCTO.
- Supports selection of portfolio priorities through evaluations of technical progress and hydrogen cost status.
- Provides complete pathway definition, performance, and economic analysis <u>not elsewhere available</u>.
- Provides analysis that is transparent, detailed, and <u>made publicly</u> <u>available</u> to the technical community.
- Results of analysis:
 - Identifies cost drivers
 - Assesses technology status
 - Provides information to DOE to help guide R&D direction

Selection of Relevance and Potential Impact H₂ Production & Delivery Cases

- DOE selects cases that support the FCTO development mission
 - Advanced Water Splitting
 - Biomass-based processes
 - Waste recovery to H₂ processes

- Cases selected based on:
 - Highest priority cases with direct application to FCTO mission
 - Data availability
 - Ability to assist studies in providing relevant cost estimates
 - Beneficial for cases without cost estimates
 - Provide assistance for proper development of H2A cases

Cases Completed in Previous Years	Cases Completed This Year	Cases Under Development
 Wiretough H₂ Storage at Dispensing Station Cost of Transmitting Energy Proton Exchange Membrane (PEM) electrolysis Update to previous case study 	 Solar Thermochemical (STCH) Conducted by NREL Anion Exchange Membrane (AEM) electrolysis (Draft submitted) 	 Anion Exchange Membrane (AEM) electrolysis Update to previous year's case study Photoelectrochemical (PEC) H₂O splitting Update to previous case study
 Solid Oxide Electrolysis (SOE) Update to previous case study 		

Approach

Electrolyzer Water Splitting Technology

Project Objective

Conduct technoeconomic analyses of various methods of water splitting:

- 1,500 kg H_2 /day distributed sites
- 50,000 kg H₂/day production sites (sometime larger systems)
- Two technology levels analyzed
 - Current: current technology at high-manufacturing rate
 - Future: future technology (2035) at high-manufacturing rate

	H2 Production Technology	Production Sizes Reported	Technology Years Reported
Approach	PEM Electrolysis	Distributed & Central	Current & Future
 Collect data from Industry/Researchers 	Solid Oxide Electrolysis	Central	Current & Future
 Assess data for consensus and trends Validate with system modeling and other tools 	Anion Exchange Membrane Electrolysis	Distributed & Central	Future & Far Future
Update H2A model with new values to obtain updated \$/kg H ₂ projections	Solar Thermochemical Hydrogen (STCH) Water Splitting	Central	Future
	PEC Water Splitting (Type II)	Central	Future & Far Future
	PEC Water Splitting (Type IV)	Central	Future & Far Future

Approach to data collection

- Surveyed industry & research groups for key technical & cost parameters
 - Data response was limited for some parameters which often left insufficient data for statistical analysis
 - Compared with previously modeled system H2A values and previous survey data
 - Various Responses received for each technology

H2 Production Technology	Number of Respondents
PEM (2019 study)	5
SOE (2019 study)	4
AEM	1
STCH	3
PEC (Type II and IV)	2+

Developed technical and cost parameters from multiple sources

- Interview/Questionnaire responses Techno-economic system analysis based on PFD (incl. DFMA)
- Literature review

Learning Curves (for comparison to reported parameter values)

Price quotes

Preliminary AEM Electrolysis System Definition

AEM Electrolysis Process Flow Diagram

Recent AEM Advances

- Commercialized Enapter Systems
 - Commercial production of 1 kgH₂/day stacks:
 - approx. 23 cells, 125cm² active area
 - 500 NL/h, 2.2 kW, implies 1.82V/cell
 - Operation with 1M KOH
 - Non-PGM catalyst
 - Claimed 30kh lifetime and 0.25%/kh degradation rate (implies 5mV/kh @ constant current))
- Most research is focused on pure-water AEM systems
 - Focus on advanced performance, durable membranes (>1A/cm² current density at 1.8V/cell and 15mV/kh degradation)
 - Near-term advances to be expected
 - Maintenance advantage of pure water (no alkaline solution)

Preliminary AEM Electrolysis System Definition

AEM Key Technical and Cost Parameters (Distributed)

	Units	PEM Current	AEM Current/ Near- Future	AEM Future	AEM Far-Future		Units	PEM Current	Current/ Near- Future	Future	Far-Future
Current TRL		9	7	5	5	Stack Electrical	kWh/kgH2	50.4	TBD	44.98	42.54
Plant Start Year	-	2019	2021	2040	2060	Usage					
Plant Size	kg H₂/day	1,500	1,500	1,500	1,500	Usage	киликдпи	55.8	~49	50.28	47.94
Capacity Factor	%	97%	97%	97%	97%	Stack Cost	\$/cm ²	\$1.30	TBD	\$0.58	\$0.56
H₂ Outlet Pressure	Bar	20.7	20.7	20.7	20.7	Mechanical BoP Cost	\$/(kg/day)	\$286	TBD	\$680	\$641
Stack Op. Pressure	Bar	20.7	20.7	20.7	20.7	Electrical BoP Cost	\$/kW	\$121	TBD	\$97	\$97
Current Density	A /cm ²	2.0	0.45	0.82	0.87	Stack Cost	\$/kW	\$342	TBD	\$418	\$391
Voltage	V	1.9	1.8	1.73	1.64	Mechanical BoP	Ś/WM	\$126		\$225	\$320
Degradation Rate	mV/1000hrs	1.5	5	1.5	1	Cost	ΥΝΝ	\$130		رعرد	Ş320
Oversize Factor	%	20%	20%	20%	10%	Electrical BoP Cost	\$/kW	\$121	TBD	\$97	\$97
Stack Lifetime	yrs	7	3.5	7	10	Total System Cost	t				
Supporting Electrolyte	1М КОН	Water	Water	Water	Water	(uninstalled, kWDCinlet)	\$/kW	\$599	TBD	\$840	\$808

"Costs" are actually prices to H2 production facility. All dollar values are 2016\$. All kW are DC input to the stack.

AEM Current Case is being revised to reflect recent advances.

9

Preliminary AEM Performance Estimates

- Current System is being re-evaluated in light of recent advances.
- Future and Far-Future Cases based on pure-water AEM operation at pressure

AEM Future Distributed

AEM Far-Future Distributed

- Basic polarization curves postulated for each system for BOL and EOL
 - Current density/voltage parametrically varied within H2A model to determine operating point yielding lowest cost H₂
 - This is a tradeoff between stack size (cost) and electricity usage (cost)
- For projected sets of assumptions, cost-optimized operating point are:
 - Future:
 - 0.82A/cm² at 1.73V/cell
 - Far-Future:
 - 0.87A/cm² at 1.64V/cell

AEM Future Distributed

Approach: STCH Techno-economic analysis

Conceptual STCH platform used as a reference for techno-economic inputs

- Boundary case focusses on two aspects of solar-hydrogen production:
 1) solar energy collection & 2) thermal-hydrogen conversion
- An analysis gap is that without a working material specified, other system aspects cannot be definitively conceived
- A general analysis approach was developed for the flexibility of assessing material candidates that are under development

- Sandia National Laboratory's CPR2 configuration
- University of Colorado's fluidized bed reactor
- NREL's planar-cavity receiver concept

Accomplishments and Progress

24% projected capital cost reduction lowers \$/kgH₂ estimate

Approach

Photoelectrochemical Water Splitting

Four Types of PEC Considered: Two selected for investigation by DOE

- Type II: Particulate Bag System nanoparticle catalysts contained in a HDPE bag
 - HER and OER reactions occur in separate HDPE bags connected via ion bridges
- Type IV: Concentrated PV Panel A PEC receiver contained in a water/electrolyte with concentrating solar panels

Type II PEC Material Fabrication

Accomplishments and Progress

- Nano-particle materials development is an active area of investigation, so cost approach is chosen for flexibility
- Solvothermal and hydrothermal are scalable synthesis pathways for bulk production of doped metal oxides
- Other pathways (e.g vapor deposition, pyrolysis, etc.) and coating options should be addressed as needed

Approach: analysis of potential raw material & syn. costs to assess cost range of nano-particles

Approach

Type II PEC Alternative Physical Designs/Structures Under Consideration

C: Flexible Tube Design

D: Flexible D-Tube Design

 H_2

HER

Tube

- Working with UC Irvine and Univ. of Michigan to evaluate the feasibility of each design:
 - The required ion bridge area and material for sufficient transfer of H⁺ ions and redox shuttle intermediaries
 - Passive mixing for greater number of reactions
 - Light scattering and energy losses within the system

Manufact. & Assembly in Field for Flexible Tube Design (C)

1. Hot press flexible sheets together on long edges to form flexible tubes and roll

OER

- 2. Unroll tubes on bottom tarp and fasten to outer bed header and footer
- 3. Attach transparent cover to outer bed
- 4. Fill tubes and outer bed with electrolyte and water

15 Further Type II PEC concepts focus of discussions with UC-Irvine/Univ. of Michigan Research Teams

Preliminary Technical Specifications

- PEC Operation is water splitting with direct solar energy
 - Solar insolation rates are used to calculate the amount of active material needed
- Separated Hydrogen Evolution Reaction (HER) and Oxygen Evolution Reaction (OER)
 - Separate Hydrogen and Oxygen beds in PEC Type II systems
 - Hydrogen and Oxygen are naturally separated by the shape and angle of the electrode in PEC Type IV System
- PEC typically has solar-to-hydrogen energy conversions below 20%
- A modular PEC design is envisioned in this analysis
 - Each module has a capacity of 1,000 kgH₂/day
 - Multiple modules strung together to reach desired H₂ production
- Preliminary system specs shown in tables to right

PEC Type II	PEC Type II System Technical Specifications			PEC Type IV System	Technical Spec	ifications
		Units	Value		Units	Value
PI	EC Type	-	Type II	РЕС Туре	-	Type IV
Average Ins	solation	kWh m ⁻ ² day ⁻¹	5.77	Average Insolation	kWh m ⁻ ² day ⁻¹	7.46
STH Ef	ficiency	%	5%	STH Efficiency	%	15%
Average H ₂ Ma	iss Flow	kg day⁻¹	1,000	Cell Efficiency	%	18%
Area Specific Ma	iss Flow	Kg H ₂ hr ⁻¹ m ⁻²	3.67E-04	Collector Efficiency	%	85%
Total Area R	equired	m²	113,266	Average H ₂ Mass Flow	kg day⁻ ¹	1,000
Bed	Length	m	61	Area Specific Mass Flow	kg H₂ hr⁻¹ m⁻²	1.43E-03
Bec	d Width	m	6.1	Total Area	m²	29,202
Bed	l Height	m	0.37	Collector Required		
B	ed Area	m²	372	Collector Length	m	6
Bed	Volume	m³	136	Collector Width	m	3
Number	of Beds	#	305	Collector Area	m²	18
Assumed Particle	Density	kg m⁻ ³	0.199	Number of Collectors	#	1,623
Partic	le Mass	kg/bed	199	PV Area Required	m²	2,921

Capital Cost Assumptions	\$
Capital Cost per Module	\$1,014,513
(H ₂ Compressor, %)	(\$872,400, 86%)
Capital Cost per Bed	¢27FF
(Excluding PEC particles)	\$2755

Capital Cost Assumptions	\$
Capital Cost per Module	\$3,286,065
(H ₂ Compressor, %)	(\$872,400, 27%)

Labor:

Module FTE =
$$\frac{0.016 FTE}{1000 m^2}$$
 (Total Land Required) +

Accomplishments and Progress

PEC Sensitivity Analysis

PEC Type II

 Case study suggests that the STH efficiency must be >6.5% with a particle lifetime of >1 years to achieve a target hydrogen price of \$2/kg

PEC Type IV

 Case study suggests that achieving a cost target of \$2/kg H2 will require an STH efficiency >40% and will need the right combination of PEC material cost, lifetime, and concentration ratio

Conclusions, Remaining Challenges and Barriers

AEM Systems

- AEM systems are promising for their potential for non-PGM catalysts, low membrane cost, and use of stainless components (i.e. Titanium is not required)
 - They are currently divided into two categories
 - Supporting-electrolyte system (such as KOH) characterized by:
 - » improved durability, (currently) poor current density, and higher maintenance-cost/inconvenience due to the presence of an alkaline solution
 - Pure Water systems are characterized by:
 - » poor membrane stability but are an active research area with focus on the advanced membranes and non-PGM/low-PGM catalysts to improve performance and durability
- TEA analysis shows that due to lower \$/cm² stack costs, AEM can be operated at lower cell voltages (than PEM) to achieve higher efficiency

<u>STCH</u>

- STCH system projections show reduced capital costs compared to the 2012 STCH analysis. This results in lower total H₂ cost (previously \$3.87/kgH₂, now \$2.54/kgH₂)
- System design for STCH pathway is difficult to define if working material is not clearly specified.
- **PEC**
 - PEC Type II (nano-particle) material durability remains a key challenge although starting material and material synthesis costs are not likely to be key cost drivers.

Response to 2019 AMR Reviewer Comments

- "The project team should evaluate more scalable systems for water splitting, such as particle-based systems and possibly PEC."
 - Response: PEC Type II system is currently under evaluation
- "The project team should consider ways in which the results from these studies could affect and drive further research and development in the science and engineering communities."
 - Response: The team considers the impacts and seeks feedback on areas of interest from the R&D community such as through the DOE Water splitting workshop (March 2021).

Future Work

Proposed Future Work

Complete AEM Analysis

- System Cost analysis
 - Explore cost of the supporting-electrolyte in light of recent advances by Enapter
 - Preliminary cost results and sensitivity analysis to be reviewed by University of Delaware, NREL, & LANL
- Publish H2A Results in Case Study DOE Record

Publish STCH H2A Cost Results (based on NREL analysis)

H2A Documentation currently under final review for publication

Complete PEC H2A analysis

- System Cost analysis
 - Continue dialog with UC Irvine and University of Michigan to refine Type II system design
 - Obtain feedback on final PEC material choice for Type II and IV
- Refine capital cost with feedback from researchers
- Conduct sensitivity analysis
- Publish H2A Results in Case Study DOE Record

Any proposed future work is subject to change based on funding levels.

Collaborations

Collaborators

Institution	Relationship	Activities and Contributions
 National Renewable Energy Laboratory (NREL) Genevieve Saur Zhiwen Ma Patrick Davenport Hailey Boyer 	Subcontractor	 Participated in weekly project calls Assisted with H2A Production Model runs & sensitivity analyses Drafted and reviewed reporting materials Managed and arranged H2A Working Group activities Conducted boundary analysis of STCH case and H2A case study
Argonne National Lab (ANL)Rajesh AhluwaliaAmgad Elgowainy	Subcontractor	 Participated in select project calls Vetted process work Expert review of transmission analysis
 Department of Energy (DOE) Ned Stetson Dave Peterson Katie Randolph Max Lyubovsky James Vickers 	Sponsor	 Participated in some weekly project calls Assisted with H2A Model and sensitivity parameters Reviewed reporting materials Direct contributors to energy transmission work

Summary

Overview

Conduct technoeconomic analyses for various hydrogen production technologies

Relevance

- Improve analysis models and increase understanding of areas demonstrating information deficiencies
- Technoeconomic analysis for H₂ Production:
 - Defines a complete production and delivery pathway
 - Identifies key cost-drivers and helps focus research on topics that will lower cost
 - Generates transparent documentation available to the community with relevant data for improved collaboration

Approach

- Utilize various cost analysis methods for determining system cost: DFMA[®] and H2A
- Collaborate with NREL, ANL, DOE, and tech experts to model SOA and future systems

• Accomplishments

- H2A Model and Case Study Updates
- Analyzed three production system (AEM, STCH, PEC)

Technical Backup and Additional Information Slides

Technology Transfer Activities

Technology transfer does not apply to this analysis-type project

Progress Toward DOE Targets or Milestones

Levelized Cost of H2 Production (\$/kg)	SA H2A Current Status	SA H2A Future Status	DOE 2025 Target	DOE Ultimate Target
Distributed Water Electrolysis Cost (1.5 Tons/Day)	4.98 (PEM)	4.48 (PEM) 4.52 (AEM Future) 4.23 (AEM Far Future)	2.30	NA
Central Water Electrolysis Cost (50 Tons/Day)	4.83 (PEM) 4.16 (SOFC)	4.48 (PEM) 3.89 (SOFC)	2.00	NA
Solar Thermochemical (STCH) (100 Tons/day)	NA	2.54	3.70	2.00
Photoelectrolchemical (Type IV)	NA	TBD	5.70	2.10
Photoelectrolchemical (Type II)	NA	TBD	4.60	2.10

Accomplishments: TEA Comparison for STCH

- Sensitivity analysis of potential STCH material effects shows productivity and lifetime are more important than cost (material and heliostat) and Solar-to-H2 efficiency.
- Water recovery, usage, and cost also important factors

Preliminary System Model

Central system with multiple 1 tpd modules.

Optimal size of Central system to be determined (considering 10-50 tpd)

	Units	Type II	Type IV
Design		Horizontal Bed	Concentrated Panel
Target H ₂ Production Rate	kg/day	1,000 (module)	1,000 (module)
Irradiance	W/m ²	240	311
Total Active Area Required	m²	113,460	29,214
Active Area (1 bed or panel)	m²	372	18
Number of beds or panels	m²	305	1,623

Hourly Refracted Irradiance - Horizontal + Window NREL Solar Radiation Data Manual, and SOLPOS Program

Aspen Simulation Model for sizing/costing BOP Accomplishments and Progress components for PEC Type IV

Table of PEC II System Materials

Physical Components	Material	Dimensions/ Amount	Other Guiding Parameters/Conditions for Cost Model
Top Bed	Transparent HDPE with anti-fog hydrophilic coatings	Film Thickness: 0.15mm Area for 1TPD:	 90% of incident light passes through (at BOL) Interference from internal reflection Low cost/Durable
Top of Bottom Bed	Transparent HDPE with anti-fog hydrophilic coatings	Film Thickness: 0.15mm HDPE < 56' x 1000'	Channel spacingLow cost
Bottom of Bottom Bed	Multi-layer Opaque/Reflective HDPE	Film Thickness: 0.3mm Area for 1TPD:	Tear resistant/durableLow Cost
Ion Bridge	 Possible materials under review: PPE woven mat (flexible) S-PEEK Regenerated Cellulose (Spectra/Por[®] 3) 	Thickness: 1mm Length: TPD Width: TPD	 Ionic conductivity Minimal/No Porosity Area Coverage Flexibility/Rollability Durability Physical attachment to HDPE
HER Catalyst	 Ir-doped SrTiO₃ Other material 	Particle size: Between 40nm and 1µm	 Loading (g/L) Lifetime (hrs or days) Fabrication Fabrication processes can create large PSD and could impact Mie scattering
OER Catalyst	 BiOV₄ Other material 	Particle size: Between 40nm and 1µm	 Loading (g/L) Lifetime (hrs or days) Fabrication
Electrolyte	- KOH (Included in both beds)	0.1 molar concentration in water	
Intermediary Reactant	- lodine, bromine, iron or other element		

Table of PEC II System Concepts

Topic Area	Options/Ideas	Guiding Parameters for Cost Model
Energy Loss Mechanisms	 Absorption (IR and UV) losses in baggy Scattering and strong absorption in NIR from broad OH stretch in water condensate Scattering and absorption in OER catalyst 	-HDPE transmits an average of 90% incident light
Bed Depth	 Too large => lowers light intensity Too small => flat foundation a challenge Active Vs Passive mixing 	 2009 light extinction analysis: 10cm bed depth is sufficient for 40nm particles at a concentration of 200nm equivalent thickness (depth of particle layer if settled at bottom)
Cell Construction	-Baggie -Upholstered/quilted -Tube Style (flexible/rigid)	 Materials Sizing/Scale Fabrication Assembly
H ₂ Loss Mechanisms	HDPE allows H ₂ to crossover (For 0.15mm thick, 156cm ³ ●mm/m ² ●atm●day) -PSA separation process	 Thickness of HDPE for minimum allowable H₂ crossover PSA H₂ recovery efficiency: 60% to 90% (Air Liquide PSA H2 purification)

Publications and Presentations

- Peterson, D., Vickers, J., DeSantis, D., "Hydrogen Production Cost From High Temperature Electrolysis – 2020", DOE Hydrogen and Fuel Cells Program Record # 20006, September 2020. <u>https://www.hydrogen.energy.gov/pdfs/20006-production-cost-high-temperature-electrolysis.pdf</u>
- Peterson, D., Vickers, J., DeSantis, D., "Hydrogen Production Cost From PEM Electrolysis 2019", DOE Hydrogen and Fuel Cells Program Record # 19009, February 2020. <u>https://www.hydrogen.energy.gov/pdfs/19009_h2_production_cost_pem_electrolysis_2019.pdf</u>
- 3. James, B., "Techno-Economic Analysis Breakout Session for Photoelectrochemical (PEC)," Presentation and Session Lead at the 2021 Advanced Water-Splitting Technology Pathways Benchmarking & Protocols Workshop, March 2021.
- James, B., "Techno-Economic Analysis Breakout Session for Low Temperature Electrolysis (LTE)," Presentation and Session Lead at the 2021 Advanced Water-Splitting Technology Pathways Benchmarking & Protocols Workshop, March 2021.
- Murphy, B., "Techno-Economic Analysis Breakout Session for High Temperature Electrolysis (HTE)," Presentation and Session Lead at the 2021 Advanced Water-Splitting Technology Pathways Benchmarking & Protocols Workshop, March 2021.