DOE Hydrogen Program

2022 Annual Merit Review and Peer Evaluation Meeting

Nuclear Hydrogen and Synthetic Diesel and Jet Fuel

Amgad Elgowainy (PI), Pingping Sun, Guiyan Zang, Clarence Ng, Hernan Delgado, Vincenzo Cappello, Pradeep Vyawahare (Argonne National Laboratory)

Richard Boardman (PI), Dan Wendt and Konor Frick (Idaho National Laboratory)

June 6-8, 2022

Project ID: NE002

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

<u>Project GOAL</u>: Evaluate cost and greenhouse gas (GHG) emissions of synthetic fuel production using nuclear power and thermal energy

Overview

Timeline

- Start: October 2021
- End: Determined by DOE
- % complete (FY22): 70%

Barriers to Address

- Insufficient suite of models and tools
- Indicators and methodology for evaluating economic and environmental sustainability
- Overcome inconsistent data, assumptions, and guidelines

Budget

• Funding for FY22: \$563K

Partners/Collaborators

- Idaho National Laboratory
- Industry collaborators

$H_2+CO_2 \rightarrow Liquid hydrocarbon fuels and chemicals$

Synthetic fuels or electrofuels "e-fuels" are liquid hydrocarbons, e.g., Fischer-Tropsch (FT) fuels, that encompass energy carriers (and their intermediates) primarily using a carbon source and electricity (for hydrogen)

Approach/Strategy

Conversion processes for synthetic FT fuels Approach/Strategy

Approach/Strategy

Potential synfuel production by nuclear power capacity

Nuclear reactor scale	Large (300~1,000+MW)	Small (20~300MW)	Micro (1~20MW)
			<image/>
H ₂ production from HTE (efficiency 80%)	170~580 metric ton/day	12~170 metric ton/day	0.6~12 metric ton/day
FT fuel production	270~910 metric ton/day	18~270 metric ton/day	0.9~18 metric ton/day
FT fuel production	98,000~330,000 gal/day	6,500~98,000 gal/day	330~6,500 gal/day

Nuclear reactor scale information from Shannon Bragg-Sitton and Richard Boardman 08/12/2021 Next Generation Nuclear Energy -Advanced, Small and Micro-Modular Reactors (SMRs and MMRs)

Synfuel synthetic plant evaluated by ANL

Nuclear power	H ₂ production	FT fuel production
440 MW	255 metric ton/day	185,000 gal/day

System boundary for synthetic (FT) fuel economic and environmental analysis

7

Approach/Strategy

Accomplishments

Process modeling of FT fuel production using Aspen-Plus

System boundary-new baseline

- ✓ H_2 and electricity from NE plant
- \checkmark Tail gases are combusted for direct heating and generating steam
- ✓ Low quality steam (151°C) can be used for H₂ electrolysis or CO₂ capture from industrial/power plant

- Chemical equations of C1-C30 carbon chain
 - ✓ The Fischer–Tropsch (FT) process involves a series of chemical reactions that produce a variety of hydrocarbons C_nH_{2n+2} (alkanes)
 - ✓ The more useful products are C_5 – C_{18}

9

Large number of CO₂ sources exist within 100-mile radius from nuclear power plants

Potential CO₂ supply from various sources (2020)

Sector	CO₂ Purity	Subgroup	Number of Facilities (Process CO ₂ emission above 0.1 MMT/yr)	CO ₂ annual production [million ton-CO ₂]	
Industries	High	Ethanol Plant ^(a)	134	25.9	
		Ammonia ^(b)	25	21.2	
		Natural Gas Processing ^(b)	44	9.8	
Industries	Medium	Hydrogen ^(b)	76	38.3	
		Cement ^(b)	89	64.6	
		Iron and Steel ^(c)	56	38.0	
Power Plants	Low	Coal Power Plant	195	720	
		Natural Gas Power Plant	602	629	
		Co-firing of Coal/NG at the Same Location	34	97.1	
		Total	1,255	1,618	

(a) Biogenic CO_2 emission (calculation based on ethanol production)

(b) CO₂ Emission from processes (exclude combustion emissions)

(c) 66% of the total CO_2 emission: 66% of mid-purity CO_2 emission facilities

Reference:

- EPA GHGRP, RFA Ethanol Production 2020

- Zang et al. 2021. Environnemental Science & Technology 2021, 55, 7595-7604

CO₂ cost vary by source

$> CO_2 cost$

- ✓ Includes captured cost and transportation cost
- ✓ CO₂ captured cost is impacted by CO₂ concentration and scale
- ✓ CO₂ transportation cost is impacted by transportation distance and CO₂ daily demand
- ✓ The CO₂ transportation distance is assumed to be 50 miles

Process modeling for synthetic FT fuel production: product yield

Feedstock Input							
Feedstock	Mass flow (MT/day)		Cost (\$/kg)	Cost (\$/day)			
H ₂	25	55	1.63*	414,954			
CO ₂	1,5	80	0.0249	39,342			
Total				454,296			
		FT fuel out	put				
Fuelture	Mass/vol	ume flow					
Fuel type	MT/day	gal/day					
Naphtha	176	67,495					
Jet fuel	213	76,287					
Diesel	118	40,723					
Total	507	184,505					
		Total FT fuel co	nversion				
Carbon conversion ratio (%)			99%				
H ₂ consumption		1 20					
(kg/gal-FT fuel)							
CO ₂ consumption			, second se	2 56			
(kg/gal-FT fuel)			0.30				

*H₂ cost scenarios: baseline natural gas H₂ \$1.15/kg, nuclear HTE \$1.63/kg, DOE targets \$1/kg and \$2/kg, high \$3/kg

12

Argonne 🛆

Energy Efficiency of FT fuel production is ~50%

Energy conversion efficiency (including nuclear energy for H₂ production)

Energy balance	Energy type	MW (LHV*)
	Nuclear electricity for H ₂ production	422
Rate of energy inputs	Nuclear thermal energy for H ₂ production	72.9
	Electricity for FT process	14.9
	Naphtha	90.2
	Jet fuel	108
Rate of energy outputs	Diesel	59.5
	Byproduct steam from FT reactor	79.8
FT-fuel production efficiency from nuclear electricity and thermal energy		51%
Total energy efficiency (including energy in byproduct steam)		66%

*LHV=Lower Heating Value

Nuclear-based e-fuels virtually eliminate life-cycle GHG emissions of conventional fuels

Using Argonne's GREET® model (https://greet.es.anl.gov)

14

Accomplishments

Life-cycle emission analysis of power generation facilities

--Estimating embodied emissions from facilities installation, operation, and associated upstream processes of material production and manufacturing

--Compare the embodied emissions of different power generation facilities in the functional unit of per kWh of electricity generated:

- Solar photovoltaic (PV) system
- Wind turbine
- Nuclear power plant

Embodied GHG emissions of electricity generating facility (gCO_{2e}/kWh)

	Solar PV	Wind	Nuclear power plant
Average	28.5	9.68	0.29
High	66.5	15.5	0.43
Low	19.2	7.73	0.24

Row material extraction

Material processing

Manufacturing

Argonne

Life-cycle GHG emissions of e-fuels and conventional fuels, including CAPEX emissions

Using Argonne's GREET® model

Accomplishments

Historic retail prices for conventional fuels (untaxed) as baseline for comparison with FT cost*

Gasoline	15 Years	20 Years	Jet Fuel	15 Years	20 Years	C	Diesel Fuel	15 Years	20 Years
Average	\$2.42	\$2.23	Average	\$2.19	\$1.96		Average	\$2.76	\$2.50
Stdev	\$0.50	\$0.59	Stdev	\$0.69	\$0.76		Stdev	\$0.54	\$0.69
Lowest	\$1.45	\$ 0.95	Lowest	\$0.73	\$0.56		Lowest	\$1.74	\$1.00
Highest	\$3.48	\$3.48	Highest	\$4.01	\$4.01		Highest	\$4.09	\$4.09
90th	\$3.13	\$3.08	90th	\$3.12	\$3.06		90th	\$3.46	\$3.44
80th	\$2.96	\$2.80	80th	\$2.95	\$2.81		80th	\$3.38	\$3.30
20th	\$1.94	\$1.75	20th	\$1.54	\$1.31		20th	\$2.23	\$1.99
10th	\$1.82	\$1.42	10th	\$1.39	\$0.93		10th	\$2.11	\$1.44

	FT Fuel Production (gal/d)	Share in FT pool	15 Yr P50	20 Yr P50	20 Yr Highest
Naphtha	67,495	37%	\$0.87	\$0.80	\$1.27
Jet Fuel	76,287	41%	\$0.84	\$0.79	\$1.66
Diesel	40,723	22%	\$0.59	\$0.55	\$0.90
Total	184,505	100%	<mark>\$2.30</mark>	\$2.14	<mark>\$3.83</mark>

H₂ cost dominates FT fuel cost

*MSFP= Minimum fuel selling price

CO₂ cost also impacts FT fuel cost

CO₂ avoidance credits can improve market competitiveness of FT fuels

External collaboration

- Idaho National Laboratory (nuclear high-temperature electrolysis modeling) and hydrogen techno-economic analysis
- Argonne National Laboratory (FT process modeling, life cycle analysis and techno-economic analysis)

Planned/proposed future work

- Document analysis in peer-reviewed publications
- Publish GREET suite of models along with documentation by end of FY22
- Update nuclear fuel cycle for various reactor technologies in GREET
- Expand life cycle analysis and GREET model to include small modular reactors and micro-reactors (both fuel cycle and CAPEX embodied emissions)
- Expand techno-economic and life cycle analysis to include other nuclear-based energy systems across energy sectors (e.g., ammonia production, oil refining, direct air capture of CO₂, etc.)
- Expand techno-economic and life cycle analysis to include energy storage systems (e.g., batteries)
- Continue evaluation of emerging technologies of interest to DOE

Summary

- Relevance: cost and greenhouse gas (GHG) emissions of synthetic fuel production using nuclear power and thermal energy
- Approach: Engineering process modeling (ASPEN Plus), life cycle analysis (GREET), and techno-economic analysis (H2A)
- Collaborations: collaborated with Idaho National Laboratory researchers, who modeled nuclear hightemperature electrolysis and provided hydrogen techno-economic analysis

Technical accomplishments

- Conducted CO₂ supply chain analysis from industrial and power sources, including scale and cost of CO₂ by scale, purity level and transportation distance
- Developed and optimized ASPEN Plus model for integrated HTE-FT process to evaluate process efficiency, product yield and associated CAPEX/OPEX
- Evaluated and compared cost and GHG emissions associated with nuclear-based FT fuels to conventional fuels
- Evaluated embodied carbon in solar PV, wind turbines, and light-water nuclear plants
- Documented modeling and analysis in reports

Future Work:

- Update nuclear fuel cycle for various reactor technologies in GREET
- Expand GREET model to include small modular reactors and micro-reactors (both fuel cycle and CAPEX embodied emissions)
- Expand techno-economic and life cycle analysis to include other nuclear-based energy systems
- Expand techno-economic and life cycle analysis to include energy storage systems

23

Argonne 🕰

aelgowainy@anl.gov

TECHNICAL BACKUP AND ADDITIONAL INFORMATION

ACCOMPLISHMENTS AND PROGRESS: RESPONSES TO PREVIOUS YEAR REVIEWERS' COMMENTS

This is a new project in FY22, and thus has not been previously reviewed

TECHNOLOGY TRANSFER ACTIVITIES

- Not applicable to this project

SPECIAL RECOGNITIONS AND AWARDS

- None for this project

PUBLICATIONS AND PRESENTATIONS

- Zang, G., Sun, P., Delgado, H.E., Cappello, V., Ng, C., Elgowainy, A. (2022) "The modeling of Synfuel Production Process: Process models of FT production with electricity and hydrogen provided by various scales of nuclear plants," ANL/ESD-22/8.
- Zang, G., Sun, P., Elgowainy, A. (2022) "The modeling of Synfuel Production Process: Process models of FT production with electricity demand provided at LWR scale," ANL/ESD-22/1.
- Zang, G., Sun, P., Yoo, E., Elgowainy, A., Bafana, A., Lee, U., Wang, M. and S. Supekar (2021) "Synthesis Methanol/ Fischer–Tropsch Fuel Production Capacity, Cost, and Carbon Intensity Utilizing CO2 from Industrial and Power Plants in the United States," Environmental Science & Technology Article ASAP. DOI: 10.1021/acs.est.0c08674.

PROGRESS TOWARDS DOE TARGETS OR MILESTONES

Progress towards analysis targets / milestones can be assessed through our contributions to relevant barriers:

- 1. Barrier: Insufficient suite of models and tools
 - Developed ASPEN Plus process model for integration of HTE-H₂ with FT process
 - Updated and expanded the GREET suite of models to evaluate environmental impacts of nuclear FT production
- 2. Barrier: Indicators and methodology for evaluating economic and environmental sustainability
 - Evaluated life cycle cost and GHG emissions using consistent modeling frameworks and assumptions
- 3. Barrier: Inconsistent data, assumptions, and guidelines
 - Collected data from literature, models, and industry sources
 - Harmonized assumptions across various modeling platforms
 - Vetted model inputs and analysis outputs

