

Hydrogen Production Cost and Performance Analysis

DOE Hydrogen Program 2023 Annual Merit Review and Peer Evaluation Meeting

PI: Brian D. James Yaset Acevedo Jacob Prosser Jennie Huya-Kouadio Kevin McNamara

Strategic Analysis AMR Project ID: P204 DOE Project Award No. DE-EE0009629 June 7, 2023

This presentation does not contain any proprietary, confidential, or otherwise restricted information

STRATEGIC ANALYSIS

Project Goal

- <u>Conduct technoeconomic analysis</u> to evaluate the cost to produce H₂ (\$/kg) through <u>various technological production pathways</u> (i.e., electrolysis, PEC, others) using
 - Design for Manufacture and Assembly (DFMA) capital cost estimation techniques,
 - Heat & mass balances, and
 - H2 Analysis (H2A) discounted cash flow models.
- Estimate the cost of H₂ based on state-of-the-art technology at <u>central production</u> facilities (50-500 tons per day) and <u>measure the cost impact</u> of technological improvements in H₂ production technologies.
- Evaluate the <u>cost drivers</u> and <u>recommend</u> to DOE the <u>technical areas needing</u> <u>improvement</u> for each technology.

Overview

Timeline

- Project start date: 10/1/2021
- Project end date: 9/30/2024
- Percent complete: ~50% of project

Barriers

- Hydrogen (H₂) Generation by Water Electrolysis
 - F: Capital Cost
 - G: System Efficiency and Electricity Cost
 - K: Manufacturing

Budget

- Total Funding Spent
 - ~\$392K SA (though Mar 2023)
- Total DOE Project Value:
 - ~\$775k SA
- Cost Share Percentage: 0% (not required for analysis projects)

Partners

- National Renewable Energy Laboratory (NREL)
- Idaho National Laboratory (INL)

Collaborators (unpaid)

4 Electrolyzer companies and research groups

Relevance and Impact

- Investigates production and delivery <u>pathways selected/suggested by DOE</u> that are relevant, timely, and of value to HFCTO.
- Supports selection of portfolio priorities through evaluations of technical progress and hydrogen cost status.
- Provides complete pathway definition, performance, and economic analysis <u>not</u> <u>elsewhere available</u>.
- Provides analysis that is <u>transparent</u>, detailed, and <u>made publicly available</u> to the technical community.
- Results of analysis:
 - Identifies cost drivers
 - Assesses technology status
 - Provides information to DOE to help guide R&D direction
 - Highlight real world scenarios that can achieve the Hydrogen Shot goal of \$1 for 1 kg hydrogen in 1 decade

Approach: Bottom-Up Project Cost Model for Low-Temperature Electrolysis

Project Objective

- Support HFCTO in their selection of portfolio priorities by evaluating technical progress of H₂ production pathways
- Assess the potential to meet H_2 production cost targets (H2 Shot: \$1/kg of H_2 by 2031)
- Evaluate the uncertainty and show the potential for H₂ cost reduction for each pathway through single and multi-variable sensitivity analyses
- Perform rigorous review of system design and assumptions, confirm the validity of assumptions with experts external to the project, and document results in reports and presentations

Approach

- Collect data via published journal articles, patents, and report
- Conduct DFMA analysis to estimate cost of electrolysis stack
- Obtain review of DFMA cost results and compare with other studies
- Conduct system modeling to estimate sizing of balance of plant components
- Plant and equipment sizing are based on end-of-life (EOL) operating conditions
 - Central: 50 Tons/Day (nominally)
 - (Distributed cases at 1.5 Tons/Day have been considered in past SA analyses. But DOE has directed us to solely assess the Central case)
- Update H2A model with new values to obtain updated \$/kg H₂ projections

Selected Pathway: Anion Exchange Membrane (AEM) using KOH solution [AEM KOH] and AEM using pure water solution [AEM Water]

Task	Description	Completed for 2023 Analysis
1	Technologies Identification, Review, and Selection of Pathway	Milestone 1.2 submitted in October 2022
2	System Definition and Bill of Materials	Milestone 2.2 submitted in March 2023
3	Techno-economic Analysis	In Progress: Milestone 3.2 to be submitted in June 2023
4	Case Study Documentation and Project Reporting	Planned: Milestone 4.2 to be submitted in September 2023 (Go/No-Go decision metric)

System definition developed for AEM KOH and AEM Water electrolysis systems (Optimized operating points shown in table. Polarization curves shown on future slide.)

		АЕМ КОН		AEM Water		
Parameter	Units	Current	Future	Current	Future	
Performance						
Current Density (BOL Rated)	A/cm ²	0.8	3.0	0.5	2.0	
Voltage (BOL Rated)	V/cell	1.8	1.8	1.8	1.8	
Current Density (BOL, optimal)	A/cm ²	0.47	0.72	0.45	0.74	
Voltage (BOL, optimal)	V/cell	1.70	1.68	1.77	1.69	
Current Density (EOL, optimal)	A/cm ²	0.47	0.72	0.45	0.74	
Voltage (EOL, optimal)	V/cell	1.90	1.70	2.15	1.72	
Degradation Rate	mV/khrs	10.0	1.0	48.6	1.0	
Stack Durability	years	4	10	1	7	
Specifications						
Cell Active Area	cm ² /cell	800	3,000	800	3,000	
Nominal Pressure (Anode/Cathode)	bar / bar	1/30	1/30	1/30	1/30	
Operating Temperature	°C	70	70	70	70	
KOH Concentration	М	1	1	1	1	
Nominal Stack						
EOL Power (DC)	MW	0.24	2.0	0.24	2.0	
Hydrogen Production	kgH ₂ /day	119	1,042	104	1,042	
# of cells	#	373	532	320	520	

Current Technology assumption of a low active area cell (800cm²) results in a low power stack (240kW EOL). (This will lead to relatively high LCOH as shown on a future slide.)

Accomplishment and Progress

Modeled AEM KOH and AEM Water Electrolysis Cell Design

SA design used for <u>Current and Future Case</u> Cost Analysis

• Generic AEM electrolysis cell design: does not exactly match any one company (but is meant to be representative of the key materials and design features of current, modern, commercial stacks)

AEM Electrolyzer Stack Parameters

Parameter	Unit	AEM Current	AEM Future	Notes
OER Catalyst	-	FeNiOOH	FeNiOOH	
OER Loading	mg _{catalyst} / cm ²	4.8mg/cm ²	4.8mg/cm ²	
OER Cost	\$/kg	\$3	\$4	
HER Catalyst	-	Pt/C	Pt/C	
HER Loading	mg _{catalyst} / cm ²	0.47 mgPt/cm ²	0.1 mgPt/cm ²	
HER Cost	\$/kg	~\$49,191	~\$49,191	
Diaphragm/Membrane	-	Polymeric	Polymeric	
Diaphragm/ Membrane Thickness	μm	50	50	
BOL Cell Voltage	V	1.8	1.8	
Current Density (rated)	A/cm ²	0.8 (КОН)	3.0 (КОН)	AEM rated operating point modified from AMR 2022 based on
Current Density (rated)		0.5 (Water)	2.0 (Water)	literature review and feedback from reviewers
Stack Pressure (Cathode/Anode)	Bar	~30/~1	~30/~1	
Electrolyte		1M KOH	1M KOH	
Voltage Degradation	mV/1kh	10.0 @0.8A/cm ² (35kh life)	1.0 @3A/cm ² (90kh life)	
Anode Porous Transport Layer (PTL)		Sintered porous Ni 1.6mm	Sintered porous Ni 1.6mm	
		150um thick (105um carbon	150um thick (105um	
Cathode Porous Transport Layer		fiber substrate with 45um	carbon fiber substrate with	
(PTL)		thick MPL)	45µm thick MPL)	
		Etched,	Etched,	
Bipolar Plate		Ni coated Stainless Steel	Ni coated Stainless Steel	
Constant Distributor		Stamped,	Stamped,	
Current Distributor		Copper Plate	Copper Plate	
End Dista		Machined,	Machined,	
		Stainless Steel	Stainless Steel	
Compression System		Tie Rods	Tie Rods	

Values subject to change during review process

AEM KOH Electrolyzer Cost per Active Area Current: ~\$0.158/cm² compared to Future:~\$0.103/cm² at ~1GW/yr

Current Central AEM KOH Electrolyzer

Future Central AEM KOH Electrolyzer

- Values reported on this slide exclude markup and installation
- Future system cost reduction due to omission of change of stack size and reduced Pt loading

Accomplishment and Progress

Accom AEM KOH Electrolyzer Total Stack Cost Current: ~\$201/kW compared to Future:~\$97/kW at ~1GW/yr

Current Central AEM KOH Electrolyzer

Future Central AEM KOH Electrolyzer

- Values reported on this slide exclude markup and installation
- \$/kW costs are based on BOL stack power (optimized conditions)
- Future system cost reduction due to omission of change of stack size and reduced Pt loading

Accomplishment and Progress

Process diagrams developed for AEM KOH and AEM Water

AEM KOH

AEM Water

- KOH solution only enters anode and diffuses to cathode. Cathode effluent separator only contains trace amounts of water
- Only Cathode assumed to be pressurized. No hydrogen compressor required

AEM Water Process Design Notes

- Water deionizer used to maintain inlet water purity
- Only Cathode assumed to be pressurized. No hydrogen compressor required

Mechanical and Electrical BOP Component Cost Overview

- Balance of Plant can be broken down into two sub-components:
 - Mechanical BOP:
 - Consists of equipment, piping, valves, and instrumentation
 - Cost basis
 - Major BOP Equipment: Aspen-generated cost estimates based on technical specifications
 - Piping: Aspen-generated cost estimates based on sizing and materials specifications
 - Valves: Published cost curves from Plant Design and Economics for Chemical Engineers, Fifth Edition, 2003
 - Instrumentation: Published quotes from Plant Design and Economics for Chemical Engineers, Fifth Edition, 2003
 - Includes temperature, pressure, flow, and level indicators

- Electrical BOP:

- Consists of rectifier and housing; electrical wiring; and electrical infrastructure
- Cost basis
 - Rectifier: Quote from Rectifier vendor
 - Transformer: Estimate from 2013 engineering study
 - Electrical Wiring: Estimated using Craftsman methodology
 - Electrical Infrastructure: Estimated from publicly available price estimates

Polarization Curves – Cost Optimized Operating Point

Summary of Cost Optimization

- Beginning of life (BOL) and end of life (EOL) polarization curve generated by assuming a constant degradation per year and a specific stack lifetime
- Cost optimized operating point selected by calculating a H2A hydrogen price for various current densities
- Operating point influences BOP capital cost, while BOP capital cost influences cost optimized operating point. Therefore, operating point and capital cost must be co-optimized.
 - 2nd iteration of H2A cost optimization procedure showed only minor changes between initial operating point and re-optimized operating point.

STRATEGIC ANALYSIS, INC.

Project Technical Parameters

		АЕМ КОН		AEM Water	
Parameter	Units	Current Futur		Current Futur	
Plant Specifications					
Plant Capacity	kg H ₂ /day	50,000	50,000	50,000	50,000
Electrolyzer Power (System, BOL Rated)	MW	107	104	109	104
Number of Modules per Plant	#	4	2	4	2
Total Electrical Usage (BOL Rated)	kWh/kg	51.3	50.0	52.2	49.8
Stack Electrical Usage (BOL Rated)	kWh/kg	47.8	47.8	47.8	47.8
Total Electrical Usage (Average, optimal)	kWh/kg	51.4	47.0	59.3	47.2
Stack Electrical Usage (BOL, optimal)	kWh/kg	45.2	44.6	48.6	44.9
Stack Electrical Usage (EOL, optimal)	kWh/kg	50.5	45.1	61.1	45.7
BOP Electrical Usage	kWh/kg	3.4	2.2	4.4	1.9
Output Pressure	bar	30	30	30	30
Hydrogen Purity	%	99.99	99.99	99.99	99.99

Project balance of plant equipment sized using EOL conditions, during which the most heat is generated ΔT across low temperature stacks limited to 10 °C

STRATEGIC ANALYSIS, INC.

AEM Electrolyzer and Project Capital Cost

Accomplishment and Progress

(Comparison to alternative low-temperature electrolyzers)

1 GW/year annual electrolyzer manufacturing rate

Cost optimization method adjusts the operating point and capital cost, resulting in balanced stack costs for different electrochemical technologies

Additional Manufacturing Costs (Site Preparation): Bottom-up cost estimate Construction Overhead (Engineering & design, project contingency, and permitting costs): General project estimates

Levelized Cost of Hydrogen (using optimized operating conditions)

(Assumes \$0.03/kWh electricity)

Current Technology

- HP Alkaline benefits from a simpler system (no compressor) and generally higher efficiency
- PEM limited by relatively lower efficiency compared to alkaline systems
- Small AEM stacks (240kW EOL) increase capital cost and introduce significant labor overhead
- Stack Replacement is a significant cost for nearterm AEM water (1 year stack lifetime)

Future Technology

- Differences in LCOH between electrolyzer technologies shrink due to similar capital costs
- HP Alkaline is able to achieve a relatively high efficiency while keeping capital costs low
- AEM with 2 MW stacks is able to achieve low capital cost while maintaining a high efficiency

- 50 MTD Plant
- Constant electricity cost: \$0.03/kWh
- All costs in 2020\$
- \$0.03/kWh electricity, 97% capacity factor
- Utilities
 Fixed O&M
 Capital Costs
 Total

AEM KOH vs AEM Water

- For the Current Case, AEM Water has the least efficient polarization curve which leads to a higher electricity cost and CAPEX
- For the Future Case, AEM Water could have comparable cost to the other LTE systems if the performance can be improved.

Collaboration and Coordination

Institution	Relationship	Activities and Contributions
 National Renewable Energy Laboratory (NREL) Genevieve Saur Jamie Kee Mark Chung 	Subcontractor	 Participated in weekly project calls Assisted with H2A Production Model runs & sensitivity analyses Drafted and reviewed reporting materials
 National Renewable Energy Laboratory (NREL) Bryan Pivovar Alex Badgett Joe Brauch 	Reviewer	 Provided guidance on electricity modeling and performance optimization Review of assumptions for Alkaline and PEM electrolyzer performance
Idaho National Laboratory (INL)Daniel Wendt	Subcontractor	 Participated in select project calls Expert in Solid Oxide Electrolysis (which is planned for project analysis)
 Department of Energy (DOE) James Vickers (primary) Ned Stetson Dave Peterson 	Sponsor	 Participated in biweekly project calls Assisted with H2A Model and sensitivity parameters Reviewed reporting materials
Companies: • Versogen • EvolOH • De Nora • AquaHydrex	Reviewer	 Versogen provided feedback on Anion Exchange Membrane design EvolOH provided feedback on Anion Exchange Membrane design and performance De Nora provided guidance on alkaline membrane performance and degradation AquaHydrex provided feedback on Alkaline and PEM stack design and performance

Conclusions, Remaining Challenges and Barriers

<u>Anion Exchange Membrane Electrolysis Systems</u>

- AEM systems are promising for their potential for non-PGM catalysts, low membrane cost, and use of stainless components (i.e., Titanium or Nickel plates/plating may not be required)
- Although pure water systems can have a simplified BOP system without a KOH scrubber, there are multiple advantages for operating with a supporting-electrolyte system (such as KOH) that include:
 - » improved durability over pure water systems
 - » improved current density over pure water systems
- TEA analysis shows that due to lower \$/cm² stack costs, AEM can be operated at lower cell voltages (than PEM) to achieve higher efficiency
- Durability and performance remain significant issues, even with KOH electrolyte added
 - Although the understanding of degradation mechanisms are slowly being uncovered, AEM systems in a way are playing "catch-up" to PEM systems (which has had more intensive R&D in the last 20 years)
 - If AEM durability & performance can rise to the level of PEM systems, AEM systems may be quite competitive on a \$/kgH₂ cost basis

Overview of Low Temperature Electrolysis

- By using a consistent cost basis and by using operating point optimization to minimize LCOH, the different LTE technologies can be compared on a fair basis
- After operating point optimization, the difference in LCOH between LTE technologies is suppressed, especially for Future cases
- Rigorous review of realistic future electricity costs needed for fair comparison of LTE technologies, especially with regards to dynamic operation

Proposed Future Work

Complete AEM H2A Cases

- System Cost analysis
 - Conduct sensitivity analysis
 - Vet cost results and sensitivity analysis with NREL, Versogen, EvolOH
- Publish H2A Results in Case Study DOE Record

• \$1/kg Hydrogen-Shot Scoping Study

- Investigate the ability of electrolysis to achieve the target by:
 - Reducing stack cost
 - Reducing operating costs, including labor
 - Reducing cost of electricity through selective utilization of low-cost electricity generated from wind and solar
 - Co-optimize size of stack, operating point, capacity factor, and electricity price to minimize average LCOH
- Investigate delivered cost of hydrogen depending on regional production and delivery
- Conduct cost analysis of Proton-Conducting Solid Oxide Electrolysis
 - Collaborate with INL for cell, stack, and system design and operation
 - Estimate stack cost and resulting LCOH of system

Any proposed future work is subject to change based on funding levels.

Summary

Overview

 Conducted technoeconomic analyses for AEM Electrolyzer hydrogen production technologies and compare to other low-temperature electrolysis technologies

Relevance

- Improve analysis models and increase understanding of areas demonstrating information deficiencies
- Technoeconomic analysis for H₂ Production:
 - Defines a complete production and delivery pathway
 - Identifies key cost-drivers and helps focus research on topics that will lower cost
 - Generates transparent documentation available to the community with relevant data for improved collaboration

• Approach

- Utilize various cost analysis methods for determining system cost: DFMA[®] and H2A
- Collaborate with NREL, ANL, DOE, and tech experts to model alternative hydrogen production technologies
- Vet assumptions and results for correctness, completeness, and maximum transparency

Accomplishments

- (In Development) Public distribution of Low-Pressure and High-Pressure Alkaline Electrolysis Case Study Report
- (In Development) Public distribution of AEM KOH and AEM Water Electrolysis Case Study Report

