HYDROGEN

1.01

001

First Demonstration of a Commercial Scale Liquid Hydrogen Storage Tank Design for International Trade Applications

P.I.: Ed Holgate Presenter: Kun Zhang Shell International Exploration and Production, Inc. DE-EE0009387 Date: 04/07/2023 DOE Hydrogen Program 2023 Annual Merit Review and Peer Evaluation Meeting AMR Project ID # ST241











This presentation does not contain any proprietary, confidential, or otherwise restricted information



### **Project Goal**

This project proposes to develop a first-of-its-kind affordable very-large-scale liquid hydrogen  $(LH_2)$  storage tank for international trade applications, primarily to be installed at import and export terminals. The project aims a large-scale tank design that can be used in the range between 20,000 m<sup>3</sup> and 100,000 m<sup>3</sup> (1,400-7,100 metric tonnes of LH<sub>2</sub>). Key success criteria for the large-scale design include:

1. Achieve a targeted  $LH_2$  BOR (boiloff rate) of <0.1%/day

2. Achieve a CAPEX (capital investment) below 150% of LNG (liquefied natural gas) storage cost (< \$175 million target cost for 100000 m<sup>3</sup> LH2 tank)

3. Safety and Integrity reviewed by regulatory bodies



#### **Timeline and Budget**

- Project Start Date: 09/01/2021
- Project End Date: 08/31/2024
- Total Project Budget: \$12 M
  - DOE Share: \$6 M
  - Cost Share:

\$3 M from Shell, \$3 M from CB&I

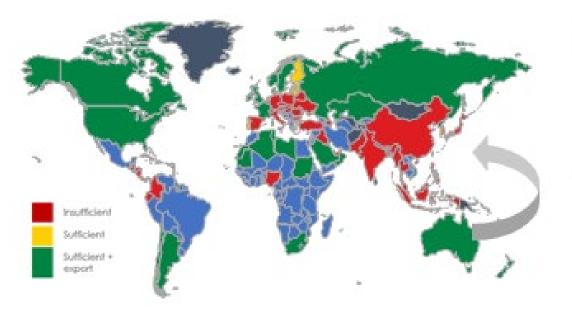
#### **Barriers**

- Ultra low boiling point of H<sub>2</sub> (20 K)
- Need to minimize boiloff product loss
- High CAPEX of LH<sub>2</sub> storage tank
- Technology scale-up

#### **Partners**

Project lead:

• Shell International Exploration and Production, Inc.


Partner organizations:

- CB&I Storage Solutions LLC (CB&I), MCDERMOTT
- GenH2 Corp. (GenH2)
- NASA Kennedy Space Center (NASA/KSC);
- University of Houston (UH)



### **Potential Impact**

#### H<sub>2</sub>: Moving Energy Without Carbon



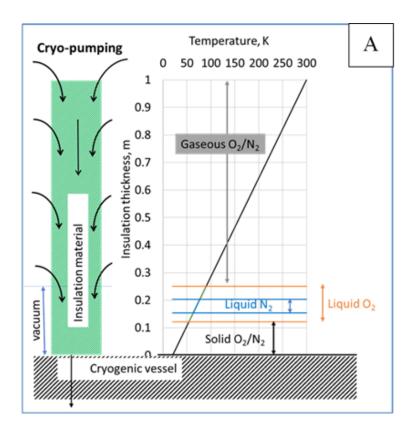
One of the three priorities in US DOE Hydrogen Program – Hydrogen Energy "Earthshots": Low cost, efficient, safe hydrogen delivery and storage

#### LH<sub>2</sub> Supply Chain Development



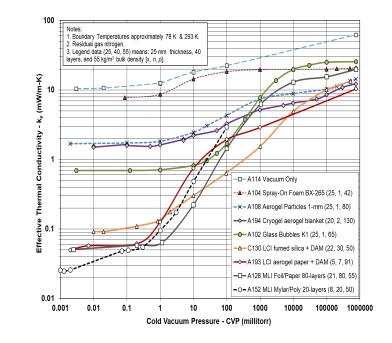
LH<sub>2</sub> storage tank 5,000 m<sup>3</sup>

Receiving terminal 100,000 m<sup>3</sup>


# Key challenges: insulation system design – vacuum vs. non-vacuum insulation strategy

#### Non-vacuum insulation system:

Cryo-pumping effect


Η

- LNG is stored at 110 K, well above the boiling point of air, air liquefaction will not happen
- Use of He or H<sub>2</sub> with high Ke



#### Vacuum insulation system:

- High to moderate vacuum with bulk-fill insulation material is the commonly deployed insulation strategy today for large-scale LH<sub>2</sub> storage.
- Dramatically reduced thermal conductivity of evacuated insulation material
- High requirement on the tank (materials, shape, vacuum shell, etc.)
- Significantly increased CAPEX of the vacuum insulated tank
- Evacuation process could take a long time
- Risk of vacuum degradation or loss for the evacuated system
- Difficult to detect the vacuum leak of the tank



(J. Fesmire et al., cylindrical boiloff calorimeters for testing of thermal insulation systems, IOP Conf. Series: Materials Science and Engineering 101 (2015))


# Project Timeline & Status

HYDROGEN

|                                                                       |                                                  | September 2021 - August 2022 |                                                                                                                                          |                                                                                   |
|-----------------------------------------------------------------------|--------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| TASK 1<br>Storage Concept                                             | Concept Generation<br>Evaluations & Shortlisting |                              | AMR 2022: Generated several concepts of Insulation<br>system and tank design, identified two leading concepts<br>with initial evaluation |                                                                                   |
| Evaluation & Selection                                                | Concept Selection                                |                              |                                                                                                                                          | AMR 2023: concept<br>development and selection,                                   |
|                                                                       |                                                  |                              | September 2022 - August 2023                                                                                                             | <ul> <li>concept derisking for selected<br/>concepts, demo tank design</li> </ul> |
|                                                                       | Insulation Installation                          |                              |                                                                                                                                          |                                                                                   |
| TASK 2<br>Demo Tank Detailed                                          | 3D Thermal Model                                 |                              |                                                                                                                                          |                                                                                   |
| Design & Engineering                                                  | LH2 Based Testing                                |                              |                                                                                                                                          |                                                                                   |
|                                                                       | Design & Engineering                             |                              |                                                                                                                                          |                                                                                   |
|                                                                       |                                                  |                              |                                                                                                                                          | September 2023 - August 2024                                                      |
| TASK 3                                                                | Demo Tank Construction                           |                              |                                                                                                                                          |                                                                                   |
| Demo Tank Construction,<br>Performance Testing &<br>Design Validation | Startup, Testing & Evaluation                    |                              |                                                                                                                                          |                                                                                   |
|                                                                       | Model Validation & Design<br>Updates             |                              |                                                                                                                                          |                                                                                   |

# Approach

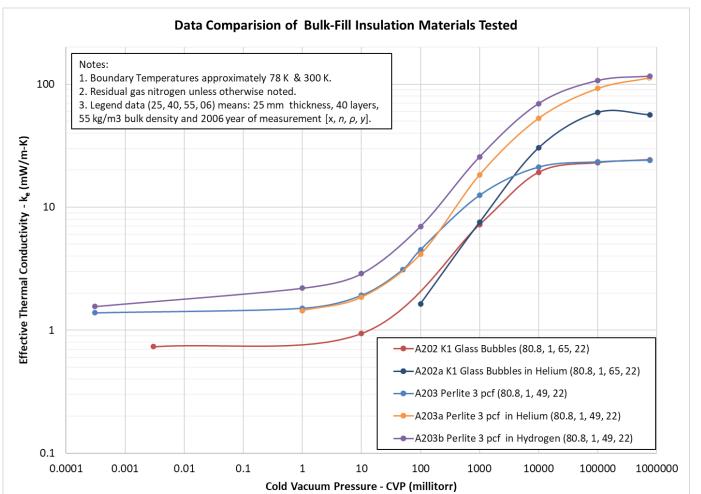
# Concept Evaluation and Selection



#### **Concept selection:**

Go/No-Go DP: To identify the most promising tank configuration reaching the targeted BOR of <0.1%/day while achieving a CAPEX of < \$175 million target cost for 100,000 m<sup>3</sup> LH<sub>2</sub> storage tank.

#### Task 1.2 Concept development / evaluation


#### Effective thermal conductivity measurement

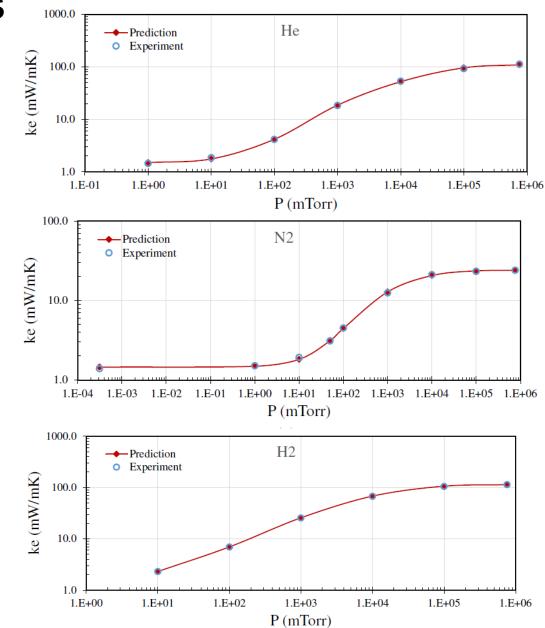
To-date, 3M K1 Glass Bubbles have been fully characterized in nitrogen and helium, and perlite in nitrogen, helium, and hydrogen using the Cryostat-100 (C-100)  $LN_2$  calorimeter.





Enclosed system of CS100 for the use of  $\rm H_2$  gas in the insulation space




#### Task 1.2 Concept development / evaluation

• **Updated insulation system thermal model** Effective thermal conductivity data of bulk fill materials (perlite, glass bubble, etc.) filled with different gases obtained from the NASA KSC LN<sub>2</sub> based experiments

$$k_e = AT + BT^3 + \frac{CT^m P}{DT + P} + \frac{ET^n P}{FT + P}$$
Equation 1  
$$k_e = a_1 + \frac{a_2 P}{a_3 + P} + \frac{a_4 P}{a_5 + P}$$
Equation 2

Table 1: Parameter values from fitting

| Parameter          | H2 Perlite | N2 Perlite | He Perlite | N2 GB   | He GB    |
|--------------------|------------|------------|------------|---------|----------|
| $a_1 (AT+BT^3)$    | 1.705      | 1.453      | 1.467      | 0.776   | 0.958    |
| $a_2(C\sqrt{T})$   | 22.933     | 13.695     | 30.553     | 23.148  | 57.550   |
| $a_3(DT)$          | 55.844     | 51.180     | 159.041    | 341.013 | 1093.667 |
| a4 ( $E\sqrt{T}$ ) | 90.490     | 8.953      | 79.459     | -       | -        |
| a5 (FT)            | 1389.586   | 657.198    | 3201.382   | -       | -        |





#### Task 1.2 Concept development / evaluation

#### Mechanical analysis

- Mechanical structure analysis on the tank configurations including tank size, tank shell design, tank materials and thickness, support design, insulation thickness, etc.
- Finite element analysis modeling to integrate the thermal and mechanical design and provide temperature contour outputs

#### • HAZID analysis

- Identify and assess potential HSE risks associated with hydrogen production
- Qualitatively compare risk differences to inform decision-making
- Establish requirements for further study and assessment in subsequent activities
- Initial insulation installation testing
- To familiarize with insulation raw materials and application techniques for installation

#### Safety risk

Features specific to the concept that cause an elevated risk to safety during operation.

No concept-specific safety risks have been identified differentiates between the two leading concepts

#### **Technical uncertainty**

Aspects of the concept design that will be resolved withing the DOE project timeline. E.g., uncertainty in material properties which will be reduced by experimental measurements / testing

#### **Technical risk**

Aspects of the concept design that cannot be fully resolved withing the DOE project timeline, and therefore represent a residual risk in a first full scale project. Examples include long term phenomena and scale-up of the final product.



#### Task 1.2 Concept development / evaluation

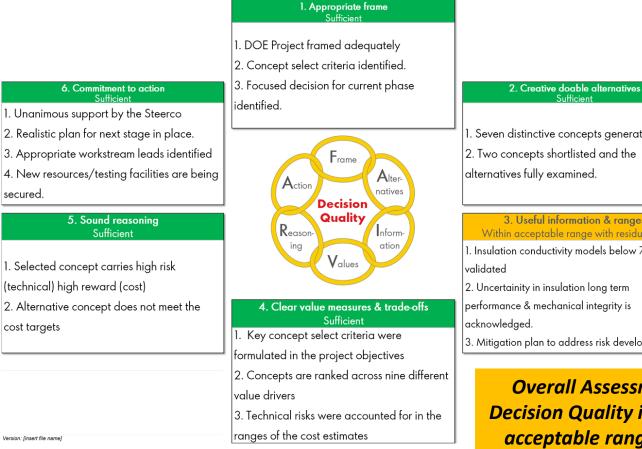
- Cost analysis
- Project Targets
- □ <150% of LNG full containment tank (~175M for 100k m3)
- □ BOR < 0.1%/d
- Relative cost comparison:

Vacuum jacketed LH<sub>2</sub> tank > Concept 1 > Concept 2 meeting cost target

#### Cost sensitivity analysis

- conducted a Monte Carlo simulation for each design concept to determine the sensitivity of the estimates to the major technical uncertainties.
- The simulation showed that the variations in the technical uncertainties had an insignificant impact on the original estimates




\_ \_ \_ \_ \_ \_ \_

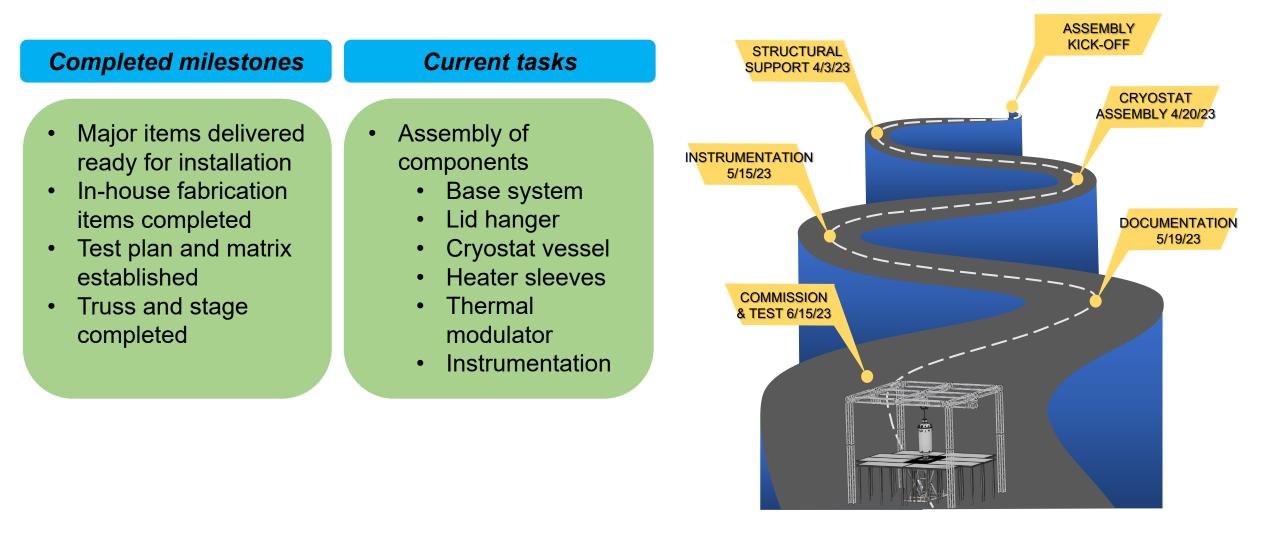
#### Task 1.3 Concept selection

| Concept Select Matrix      |                                       |                                      |  |
|----------------------------|---------------------------------------|--------------------------------------|--|
|                            | Concept 1                             | Concept 2                            |  |
| Design Safety              | Good                                  | Good                                 |  |
| BOR target                 | Designed to meet the target           | Designed to meet the target          |  |
| Cost                       | > 150% LNG                            | = 150% LNG                           |  |
| Schedule                   | 40 months                             | 43 months                            |  |
| Constructability           | Feasible                              | Feasible                             |  |
| Supply chain               | No constraint identified              | No constraint identified             |  |
| Inspection and maintenance | Similar to LNG                        | Uncertain, to be evaluated           |  |
| Insulation<br>Scalability  | May not scale<br>down<br>economically | Should scale<br>down<br>economically |  |
| Technical<br>uncertainty   | Low technical uncertainty             | High technical uncertainty           |  |

#### **Concept Select Decision Quality**

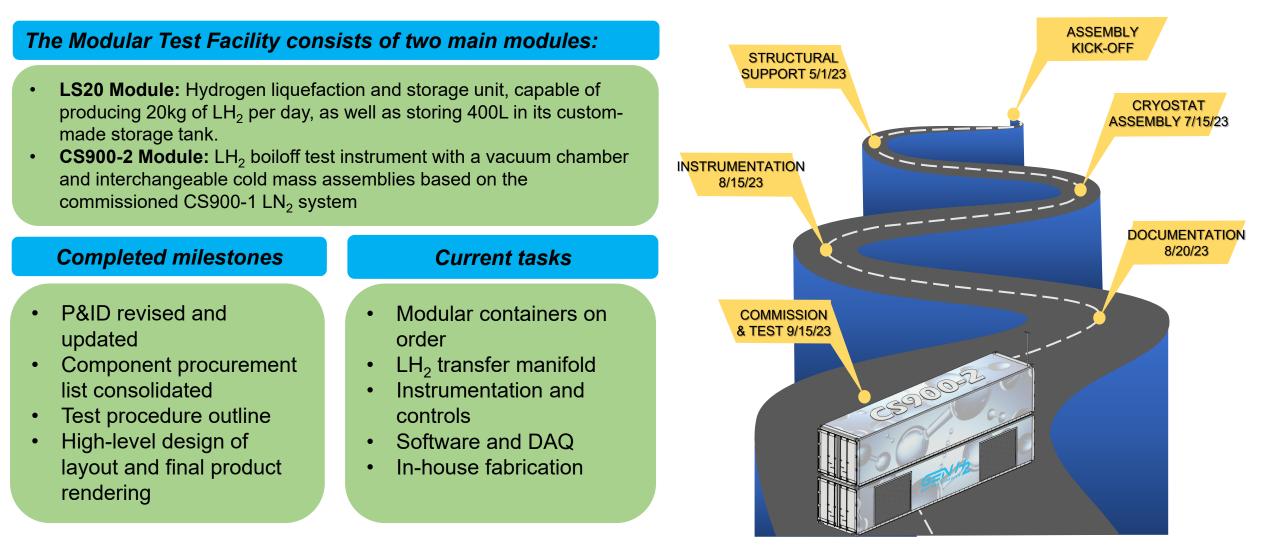
secured.




#### Concept 2 selected with endorsement of DOE

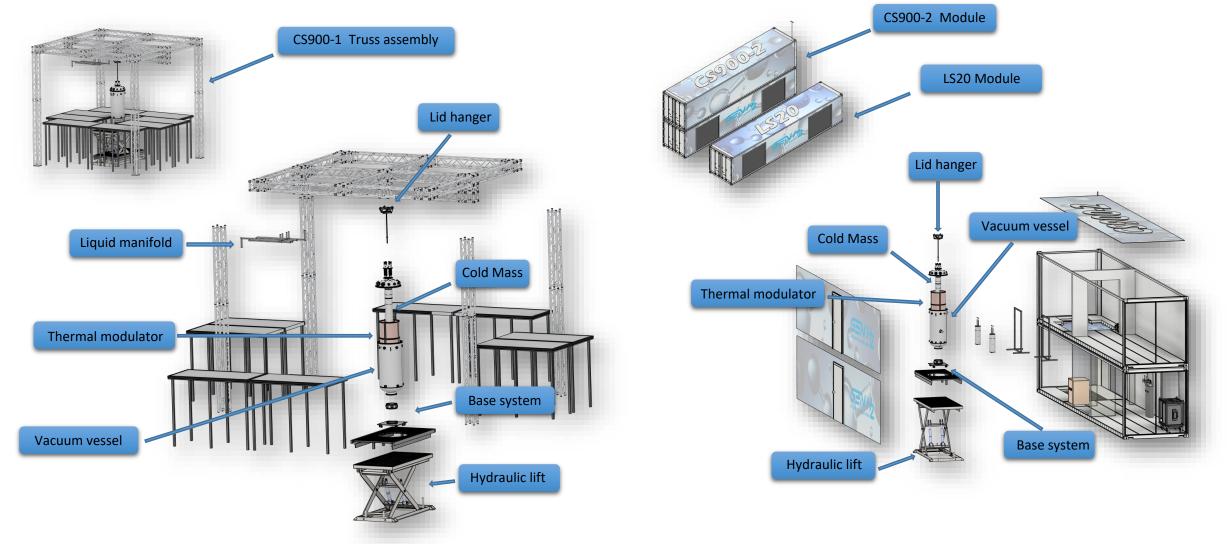
| even distinctive concepts generated.<br>wo concepts shortlisted and the<br>matives fully examined. |
|----------------------------------------------------------------------------------------------------|
| 3. Useful information & ranges<br>Within acceptable range with residual risks                      |
| ulation conductivity models below 70K to be                                                        |
| ated                                                                                               |
| ncertainity in insulation long term                                                                |
| ormance & mechanical integrity is                                                                  |
| owledged.                                                                                          |
| itigation plan to address risk developed.                                                          |
|                                                                                                    |

**Overall Assessment: Decision Quality is within** acceptable range, but with residual risk




#### Task 2.4 Cryostat CS900-1 LN<sub>2</sub>-based thermal performance measurement






#### Task 2.4 Cryostat CS900-2: LH<sub>2</sub>-based thermal performance measurement











#### Task 2.6 Demo tank detailed design and Engineering

Completed:

Demo Tank Configuration and Design Criteria:

- Inner tank design
- Inner tank support system
- Outer tank design/support
- Nozzles List

P&ID draft:

- Valves
- Instrumentation

Demo Tank Location evaluation

#### Next Steps:

- Select demo tank location and establish the contract with owner
- Finalize inner sphere support system
- Finalize nozzle orientation and annular space pipe routing
- Begin detail engineering for fabrication and construction drawings
- Engage VJ piping manufacturer to get quotes on the VJ spools
- Complete PSV sizing
- Develop valve lists and generate MR packages



### Milestone table

#### Year 2/3 Milestone

September 2022 - August 2023

|                 | Year 1 Milestone                                                                                                                                                                                                   | er 2021 - August 2022           |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Mileston<br>e # | Project Milestones                                                                                                                                                                                                 | Task<br>Completion<br>(Percent) |
| M1.1.1          | Generate technically feasible<br>concepts for large-scale $LH_2$<br>storage tank, aiming 20,000 -<br>100,000 m <sup>3</sup> storage volume and<br>BOR of <0.1% per day                                             | Q1 Y1 (100%)                    |
| M1.2.1          | Carry out Hazard Identification<br>Review for LH <sub>2</sub> tank concepts                                                                                                                                        | Q2 Y1 (100%)                    |
| M1.2.2          | Establish the small-batch LH <sub>2</sub> production and obtain the permits for testing facilities.                                                                                                                | Q3 Y1 (100%)                    |
| M1.3.1 /<br>G1  | The most promising tank<br>configuration should reach the<br>targeted BOR of <0.1% per day<br>while achieving a CAPEX of <<br>\$175 million target costfor 100,000<br>m <sup>3</sup> LH <sub>2</sub> storage tank. | Q4 Y1 (100%)                    |

|                 | i                                                                                               |                    |
|-----------------|-------------------------------------------------------------------------------------------------|--------------------|
| Milesto<br>ne # | Project Milestones                                                                              | Task<br>Completion |
| M2.5.1          | The insulation system thermal model validation with $H_2$ and $H_e$ gas in the insulation space | Q1 Y2 (100%)       |
| M2.2.1          | Development of equipment and procedure for insulation system installation                       | Q2 Y2 (90%)        |
| M2.3.1          | Establishment of 3D thermal-mechanical tank model                                               | Q2 Y2 (90%)        |
| M2.4.1          | Obtain the Ke from new-built LH <sub>2</sub> -based cryostat CS-900                             | Q3 Y2 (60%)        |
| M2.6.1/<br>G2   | Verification of tank constructability, cost and BOR based on the updated design                 | Q4 Y2              |
| M3.1.1          | Material procurement and demo tank construction based on Q1 plan                                | Q1 Y3              |
| M3.1.1          | Demo tank construction progresses according to Q2 plan                                          | Q2 Y3              |
| M3.2.1          | Demo tank commissioning and filled with LH <sub>2</sub> for the first time                      | Q3 Y3              |
| EOP             | Demonstrate and validate the design via testing                                                 | Q4 Y3              |



Responses to Previous Year Reviewers' Comments

• No review from 2022 AMR meeting

# **Collaboration and Coordination**

HYDROGEN

|          | Partner      | Scope of the work                                                                                                                                         |
|----------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Shell (lead) | Project lead, project management & reporting, concept<br>development (generation, integration, and selection), risk<br>analysis, technology safety review |
| Tasks in | NASA         | LN <sub>2</sub> based experiments                                                                                                                         |
| Y1       | GenH2        | LH <sub>2</sub> testing center and LH <sub>2</sub> based cryostat development                                                                             |
|          | CB&I         | Mechanical and structural analysis, 3D tank thermal model, cost analysis, codes & standards                                                               |
|          | UH           | Insulation property modeling                                                                                                                              |
|          | Shell (lead) | Project lead, project management & reporting                                                                                                              |
| Tasks in | NASA         | Experimental support                                                                                                                                      |
| Y2       | GenH2        | LH <sub>2</sub> based experiments                                                                                                                         |
|          | CB&I         | Insulation installation testing, demo tank design                                                                                                         |
|          | UH           | Thermal modeling support                                                                                                                                  |
|          | Shell (lead) | Project lead, project management & reporting                                                                                                              |
| Tasks in | NASA         | Experimental support                                                                                                                                      |
| Y3       | GenH2        | LH <sub>2</sub> based experiments                                                                                                                         |
|          | CB&I         | Demo tank construction & testing                                                                                                                          |
|          | UH           | Thermal modeling support                                                                                                                                  |

# Remaining Challenges and Barriers

- Challenges: for LH<sub>2</sub> testing facilities and equipment, the schedule is likely to be impacted by the uncertainty in equipment supply chain with long lead time.
- Mitigation: early planning
- Challenges: for the demonstration tank, the schedule is likely to be impacted by the uncertainty in site preparation to meet the safety requirement, materials supply chain with long lead time, etc.
- Mitigation: early planning and early ordering

# Proposed Future Work in FY2023

- Insulation system supply chain:
  - To develop the supply chain of insulation materials for the selected concept and supplier qualification program with required technical specifications
- Insulation material installation testing:
  - To design the method, equipment, and procedures necessary to apply the insulations systems on the vessel walls, as well as required field evaluation techniques and procedures for quality control and quality assurance
- Thermal modeling:
  - To continue updating of the insulation thermal conductivity model to any new data obtained from experiments, especially extension of the model to lower temperatures, i.e. from 78K to 20K
- LH<sub>2</sub>-based thermal conductivity measurement:
  - To establish all the protocols and commission the newly built CS-900; to measure thermal conductivity data of selected insulation material with cold wall temperature down to 20 K
- Detailed design and engineering of the demo tank

Note: Any proposed future work is subject to change based on funding levels



- **Relevance:** to develop a first-of-its-kind affordable large-scale LH<sub>2</sub> storage tank design (20,000 -100,000 m<sup>3</sup>) for international trade applications, primarily to be installed at import and export terminals
- **Approach:** concept development (generation, evaluation and selection); demonstration tank design, engineering, construction and testing
- Technical accomplishments:
  - Completed the mechanical structure analysis, 3D finite element analysis, hazard identification analysis, initial installability testing, preliminary cost estimates and sensitivity analysis for the two leading concepts
  - Completed the concept selection with Concept 2 selected as the concept meets the cost target with more margins, and the insulation system design could economically scale down to smaller capacities. The concept selection process was discussed with DOE official and got their endorsement with the approval for Year 2 funding support.
  - Completed the LN<sub>2</sub>-based Ke measurements on perlite at different pressures in nitrogen, helium, and hydrogen background gas, and updated the previously developed effective thermal conductivity model using the new measured data from LN<sub>2</sub>-based experiments
  - In progress: development of Liquid Hydrogen Center and design of the Cryostat CS-900 for the LH<sub>2</sub> testing
  - In progress: demo tank detailed design and engineering
- Future work:
  - Insulation material installation testing
  - Ke measurement using newly-built LH<sub>2</sub>-based cryostat CS-900
  - Milestone: Verification of tank constructability, cost and BOR based on the updated design
  - Year 3: Demo tank construction and performance testing



### TECHNICAL BACKUP AND ADDITIONAL INFORMATION



### **Technology Transfer Activities**

• Currently no technology transfer activities



### Special Recognitions and Awards

• None

#### HYDROGEN 1.01

### **Publications and Presentations**

• Jo-Tsu Liao, Kun Zhang. First demonstration of a commercial scale LH2 storage tank design for international trade application, presented in 2022 Annual Merit Review and Peer Evaluation Meeting (virtual), June 2022.

• Ram Ratnakar, Zhe Sun, Vemuri Balakotaiah. Effective thermal conductivity of insulation materials for cryogenic LH2 storage tanks: A review. International Journal of Hydrogen Energy. 2023, 48(21): 7770-7793 (https://doi.org/10.1016/j.ijhydene.2022.11.130)

• Mahsa Taghavi, Swapnil Sharma, Vemuri Balakotaiah. Natural convection effects in insulation systems of large-scale cryogenic storage tanks, paper 308b, presented at the AIChE conference, held at Phoenix, AZ from 13th-18th November 2022.

• Swapnil Sharma, Mahsa Taghavi and Vemuri Balakotaiah, Natural convection effects in insulation layers of cryogenic storage tanks, poster presentation at the 3<sup>rd</sup> Competitive Energy Systems Symposium, held at Honolulu, HI from 6<sup>th</sup>-8<sup>th</sup> December, 2022.