Table of Contents

ntroduction1
Organization of the Report2
Overview of the Hydrogen Program
Office Overviews and Updates
Introduction to the AMR Peer Review Process and Methodology
Hydrogen Production Technologies – 202427
Subprogram Overview
Project Summaries
Project #ELY-BIL-001: Megawatt-Scale Low-Temperature Electrolyzer Research Capability 30
Project #P-148: HydroGEN Overview: A Consortium on Advanced Water-Splitting Materials 34
Project #P-170: Benchmarking Advanced Water-Splitting Technologies: Best Practices in Materials Characterization
Project #P-179: BioHydrogen (BioH2) Consortium to Advance Fermentative Hydrogen Production44
Project #P-196: H2NEW Consortium: Hydrogen from Next-Generation Electrolyzers of Water 50
Project #P-200: Low-Cost Manufacturing of High-Temperature Electrolysis Stacks
Project #P-202: Novel Microbial Electrolysis Cell Design for Efficient Hydrogen Generation from Wastewaters58
Project #P-203: Novel Microbial Electrolysis System for Conversion of Biowastes into Low-Cost Renewable Hydrogen
Project #P-204: Hydrogen Production Cost and Performance Analysis67
Project #P-205: Metal–Organic Framework-Based Heterostructure Electrocatalysts with Tailored Electron Density Distribution for Cost-Effective and Durable Fuel Cells and Electrolyzers 72
Project #P-206: Single-Walled Carbon Nanotubes with Confined Chalcogens as the Catalysts and Electrodes for Oxygen Reduction Reaction in Fuel Cells
Project #P-208: Non-Intermittent, Solar-Thermal Processing to Split Water Continuously via a Near-Isothermal, Pressure-Swing Redox Cycle81
Project #P-209: Gallium-Nitride-Protected Tandem Photoelectrodes for High-Efficiency, Low-Cost, and Stable Solar Water Splitting85
Project #P-211: Inverse Design of Perovskite Materials for Solar Thermochemical Water Splitting91
Project #P-212: Ca-Ce-Ti-Mn-O-Based Perovskites for Two-Step Solar Thermochemical Hydrogen Production Cycles
Project #P-213: >200 cm ² Type 3 Photoelectrochemical Water-Splitting Prototype Using Bandgap-

Project #P-214: Demonstration of a Robust, Compact Photoelectrochemical Hydrogen Generator	04
Project #P-215: Semi-Monolithic Devices for Photoelectrochemical Hydrogen Production	30
Project #P-216: Scalable Halide Perovskite Photoelectrochemical Cell Modules with 20% Solar-t Hydrogen Efficiency and 1,000 Hours of Diurnal Durability	
Project #P-217: Scalable Solar Fuel Production in a Reactor Train System by Thermochemical Redox Cycling of Novel Nonstoichiometric Perovskites	19
Project #P-218: All-Perovskite Tandem Photoelectrodes for Low-Cost Solar Hydrogen Fuel Production from Water Splitting	23
Hydrogen Infrastructure Technologies – 20241	28
Subprogram Overview	28
Project Summaries	31
Project #H2-041: H2@Scale Cooperative Research and Development Agreement: California Research Consortium (Reference Station, Fueling Performance Test Device, Station Cap Model)	131
Project #IN-001a: Hydrogen Materials Compatibility Consortium (H-Mat) Overview: Metals	36
Project #IN-001b: Hydrogen Materials Compatibility Consortium (H-Mat) Overview: Polymers	42
Project #IN-015: Optimizing the Heisenberg Vortex Tube for Hydrogen Cooling	47
Project #IN-019: Ultra-Cryopump for High-Demand Transportation Fueling	51
Project #IN-025: Hydrogen Delivery Technologies Analysis	54
Project #IN-034: HyBlend: Pipeline Cooperative Research and Development Agreement (CRAD, Cost and Emissions Analysis	
Project #IN-035: HyBlend: Pipeline Cooperative Research and Development Agreement (CRAD, Materials Research and Development	
Project #IN-036: Cost-Effective Pre-Cooling for High-Flow Hydrogen Fueling	66
Project #IN-039: Analytic Framework for Optimal Sizing of Hydrogen Fueling Stations for Heavy- Duty Vehicles at Ports	
Project #IN-040: The HyRIGHT Project: 700 bar Hydrogen Refueling Interface for Gaseous Hear Duty Trucks	-
Project #IN-043: Detection System Comprising Inexpensive Printed Sensor Arrays for Hydrogen Gas Emission Monitoring and Reporting	80
Project #ST-001: System-Level Analysis of Hydrogen Storage Options	84
Project #ST-127: Hydrogen Materials Advanced Research Consortium (HyMARC) Overview	88
Project #ST-209: Hydrogen Materials Advanced Research Consortium (HyMARC) Seedling: Theory-Guided Design and Discovery of Materials for Reversible Methane and Hydrogen Storage	9∠
Project #ST-212: Hydrogen Materials Advanced Research Consortium (HyMARC) Seedling: Methane and Hydrogen Storage with Porous Cage-Based Composite Materials	98
Project #ST-217: Hydrogen Materials Advanced Research Consortium (HyMARC) Seedling: A Reversible Liquid Hydrogen Carrier System Based on Ammonium Formate and Captured Carbon Dioxide.	202

	Project #ST-218: Hydrogen Materials Advanced Research Consortium (HyMARC) Seedling: Hi Capacity Step-Shaped Hydrogen Adsorption in Robust, Pore-Gating Zeolitic Imidazolate Frameworks	•
	Project #ST-234: Development of Magnesium Borane Containing Solutions of Furans and Pyrro as Reversible Liquid Hydrogen Carriers	
	Project #ST-235: Hydrogen Storage Cost and Performance Analysis	214
	Project #ST-237: Carbon Composite Optimization Reducing Tank Cost	217
	Project #ST-241: First Demonstration of a Commercial-Scale Liquid Hydrogen Storage Tank Design for International Trade Applications	. 220
	Project #ST-242: Dimethyl Ether as a Renewable Hydrogen Carrier: Innovative Approach to Renewable Hydrogen Production	. 223
	Project #ST-243: FueL Additives for Solid Hydrogen (FLASH) Carriers for Electric Aviation	. 227
Fuel	Cell Technologies – 2024	231
Sub	program Overview	231
Proj	ject Summaries	234
	Project #FC-160: ElectroCat 2.0 (Electrocatalysis Consortium)	234
	Project #FC-336: A Systematic Approach to Developing Durable, Conductive Membranes for Operation at 120°C	244
	Project #FC-337: Cummins Proton Exchange Membrane Fuel Cell System for Heavy-Duty Applications	251
	Project #FC-338: Domestically Manufactured Fuel Cells for Heavy-Duty Applications	259
	Project #FC-339: M2FCT: Million Mile Fuel Cell Truck Consortium	266
	Project #FC-344: Low-Cost Corrosion-Resistant Coated Aluminum Bipolar Plates by Elevated Temperature Formation and Diffusion Bonding	. 271
	Project #FC-345: Development and Manufacturing for Precious-Metal-Free Metal Bipolar Plate Coatings for Proton Exchange Membrane Fuel Cells	. 277
	Project #FC-346: Fully Unitized Fuel Cell Manufactured by a Continuous Process	283
	Project #FC-347: Development of Low-Cost, Thin Flexible Graphite Bipolar Plates for Heavy-Du Fuel Cell Applications	
	Project #FC-348: Fuel Cell Bipolar Plate Technology Development for Heavy-Duty Applications	296
	Project #FC-349: Foil-Bearing-Supported Compressor–Expander	301
	Project #FC-350: High-Efficiency and Transient Air Systems for Affordable Load-Following Hea Duty Truck Fuel Cells	
	Project #FC-351: Durable and Efficient Centrifugal Compressor-Based Filtered Air Managemen System and Optimized Balance of Plant	
	Project #FC-352: Leveraging Internal Combustion Engine Air System Technology for Fuel Cell System Cost Reduction	. 317
	Project #FC-353: Fuel Cell Cost and Performance Analysis	322
	Project #FC-354: L'Innovator Program	. 330
	Project #FC-363: Advanced Fuel Cell Vehicle DC-DC Converter Development	336

Project #MNF-BIL-001: R2R: Roll-to-Roll Consortium	341
Systems Development and Integration – 2024	349
Subprogram Overview	349
Project Summaries	353
Project #SDI-001: Integrated Modeling, Techno-Economic Analysis, and Reference Design Renewable Hydrogen to Green Steel and Ammonia – Greenheart	
Project #SDI-002: Hydrogen Microgrid in Underserved Communities	357
Project #SDI-006: High-Temperature Electrolyzer Megawatt-Scale Test Facility	361
Project #TA-001: Membrane Electrode Assembly Manufacturing Research and Developmen	
Project #TA-016: Fuel Cell Hybrid Electric Delivery Van	
Project #TA-018: High-Temperature Electrolysis, Stack, and Systems Testing	
Project #TA-029: Autonomous Hydrogen Fueling Station	
Project #TA-030: Demonstration of Integrated Hydrogen Production and Consumption for In Utility Operations	nproved
Project #TA-037: Demonstration and Framework for H2@Scale in Texas and Beyond	390
Project #TA-039: Solid Oxide Electrolysis System Demonstration	
Project #TA-044: System Demonstration for Supplying Clean, Reliable, and Affordable Elect Power to Data Centers Using Hydrogen Fuel	tric
Project #TA-048: Advanced Research on Integrated Energy Systems (ARIES)/Flatirons Fac	
Project #TA-052: Solid Oxide Electrolysis Cells Integrated with Direct Reduced Iron Plants for Producing Green Steel	
Project #TA-053: Grid-Interactive Steelmaking with Hydrogen (GISH)	416
Project #TA-056: Ultra-Efficient Long-Haul Hydrogen Fuel Cell Tractor	420
Project #TA-057: High-Efficiency Fuel Cell Application for Medium-Duty Truck Vocations	425
Project #TA-058: Freight Emissions Reduction via Medium-Duty Battery Electric and Hydrog Fuel Cell Trucks with Green Hydrogen Production via a New Electrolyzer Design and El Utility Grid Coupling	ectrical
Project #TA-059: Identifying Medium- and Heavy-Duty Applications for Fuel Cell Electric Tru	ıcks 435
Project #TA-060: Offshore Wind to Hydrogen – Modeling, Analysis, Testing, and Internation Collaboration Work	
Project #TA-062: Validation of Interconnection and Interoperability of Grid-Forming Inverters Sourced by Hydrogen Technologies in View of 100% Renewable Microgrids	
Project #TA-063: High-Efficacy Validation of Hydride Mega Tanks at the ARIES Lab (HEVH' METAL)	
Project #TA-064: Hydrogen Production, Grid Integration, and Scaling for the Future	455
Project #TA-065: Total Cost of Ownership Analysis of Hydrogen Fuel Cells in Off-Road Hea	vy-Duty 459

Analysis, Codes and Standards – 2024	464
Subprogram Overview	464
Project Summaries	468
Project #SA-178: Cradle-to-Grave Transportation Analysis	468
Project #SA-181: Global Change Analysis Model Expansion – Hydrogen Pathways	471
Project #SA-187: Heavy-Duty Hydrogen Fueling Station Corridors	474
Project #SA-188: Sustainability Criteria for Hydrogen Deployments	478
Project #SCS-001: Component Failure Research and Development	. 482
Project #SCS-005: Research and Development for Safety, Codes and Standards: Material and Component Compatibility	
Project #SCS-010: Research and Development for Safety, Codes and Standards: Hydrogen Behavior	490
Project #SCS-011: Hydrogen Quantitative Risk Assessment	495
Project #SCS-019: Hydrogen Safety Panel, Safety Knowledge Tools, and First Responder Trai	
Project #SCS-021: National Renewable Energy Laboratory Hydrogen Sensor Testing Laboratory	503
Project #SCS-022: Fuel Cell and Hydrogen Energy Association Codes and Standards Support	. 507
Project #SCS-028: Hydrogen Education for a Decarbonized Global Economy (H2EDGE)	512
Project #SCS-030: MC Formula Protocol for H35HF Fueling	. 516
Project #SCS-031: Assessment of Heavy-Duty Fueling Methods and Components	520
Project #SCS-032: Smart Hydrogen Wide-Area Monitoring for Outdoor H2@Scale Demonstrati	
Project #SCS-033: Risk Assessments of Design and Refueling for Hydrogen Locomotive and Tender	531
Project #SCS-034: Large-Scale Hydrogen Storage – Risk Assessment Seattle City Light and P of Seattle	
Project #SCS-035: Modeling and Risk Assessment of Hydrogen–Natural-Gas Blends	540
Project #SCS-036: Electrical Hydrogen Sensor Technology with a Sub-Minute Response Time a Part-Per-Billion Detection Limit for Hydrogen Environmental Monitoring	
Project #SCS-037: Sensing Hydrogen Losses at One-Part-Per-Billion Level for Hydrogen-Blend Natural Gas Pipelines	
Appendix A. 2024 Hydrogen Program Review Summary	555
Appendix B. 2024 Hydrogen Program Annual Merit Review and Peer Evaluation Meeting Attendee List	583
Appendix C. Evaluation Forms	617

Appendix D. List of Projects Presented but Not Reviewed	.632
Appendix E. Funding Opportunity Announcement and Selections – Examples	.646