GEOLOGIC HYDROGEN: A NEW PRIMARY ENERGY SOURCE FOR THE TRANSITION TO CLEAN ENERGY?

DOUGLAS WICKS, ARPA-E DOUG.WICKS@HQ.DOE.GOV

.

WHAT, WHERE & WHY GEOLOGIC HYDROGEN?

What's happening beneath our feet?

Schematic representation of generation mechanisms

1) Radiolysis

3) "Deep Earth" sources

VISUALIZING THE ABUNDANCE OF ELEMENTS IN Focusing on subsurface iron oxidation THE EARTH'S CRUST The Earth's crust is only 1% of the planet's volume but it contains the materials we use everyday Here is the abundance of elements in the Earth's crust by percentage (%). While gold, silver, copper and other bas sought after elements, together they mak 2.33% 2.09% 0.565% 0.14% up less than 0.03% of the Earth's crust. 6 Sodium 2.36% Copper: 0.006% Zinc: 0.007% Rest of elements 0.48% Nickel: 0.0084% G Calcium Gold: 0.000004% Silver: 0.00000759 Platinum: 0.00000059 Palladium: 0.00000159 5% of Earth's Crust is Fe (II) $Fe(II) + H_2O$ 4 Iron 5.63% Iron is the world's most mined metal, essential for steel production Fe **TOP 10** 3 Alumir 8.23% luminum is t **ELEMENTS** netal found in he Earth's c Fe (III) oxides and H_2 O Si A large part of the oxygen in the earth's crust is in the form of silicates, which are compounds o oxygen and silicon Within drilling range The chemical potential of that 5% is Rank numbe 2 Silicon 28.2% 1 Oxygen 46.1% Oxygen is highly reactive 100's of trillions tons of H₂ and can bond with minerals and is found in many commo Source: The Most Abundant Elements in the The Earth's Crust, World Atlas

ELEMENTS

We live in a material world.

What is the current evidence for Geo-Hydrogen?

Joule

Future Energy The Curious Case of Geologic Hydrogen: Assessing its Potential as a Near-Term Clean Energy Source Emily M. Yedinak^{1,*}

The New York Times A Gold Mine of Clean Energy May Be Hiding Under Our Feet

Feb. 27, 2023

International Journal of Hydrogen Energy 50 (2024) 640-647

Trapping processes of large volumes of natural hydrogen in the subsurface: The emblematic case of the Bourakebougou H_2 field in Mali

Omar Maiga^{a,*}, Eric Deville^a, Jérome Laval^a, Alain Prinzhofer^b, Aliou Boubacar Diallo^c

⁸ IFP Energies Nouvelles (IFPEN), IFP-SCHOOL, 1 et 4 Avenue de Bois-Préau, 92852, Rueil-Malmaison, France. ^b GEO4U, Rio de Janeiro, Brazil ^c HYDROMA INC, Mouried, Québec, Canada

REWS TRUE BLUE BLOG

Natural Hydrogen Has Been Underestimated

DEC 6, 2023

April 30, 2024

What is the current evidence for Geo-Hydrogen?

Role of ARPA-E in Unlocking Geological Hydrogen6

Natural Hydrogen Field in Mali

7

Global Activities

- Governmental efforts
 - France
 - Spain
 - Columbia
 - Australia
- Commercial efforts
 - Multiple companies actively drilling
 - Significant amount of private capital ready to be deployed

8

First Unicorn out of the Gate

April 30, 2024

Prediction: some cheeky engineer is going to figure out how to make 100% clean hydrogen from a method no one is thinking about and is gonna make a billion dollars

10:22 AM · Feb 15, 2023 · 20.7K Views

 \mathbb{X}

 2 Reposts
 2 Quotes
 49 Likes
 7 Bookmarks

 Q
 1↓
 Q
 □ 7
 1

First Unicorn out of the Gate

Bill Gates Backs Stealth Startup with \$91M for Hydrogen Revolution

By Jennifer L

< Share f

Facebook

FORBES > INNOVATION > TRANSPORTATION

EDITORS' PICK

Bill Gates-Backed Clean Fuel Startup Raises \$246 Million To Aid Plans To Drill For Hydrogen

Forbes

Koloma, which extracts naturally occurring hydrogen from underground deposits, added Khosla Ventures, Amazon and United Airlines as key backers in its biggest funding round.

April 30, 2024

Where might we find in the US?

What is the pathway to practical impact? How will barriers to commercialization be overcome?

Geologic hydrogen resources may be close to demand sectors, including:

Example Geologic Hydrogen Prospect Map

Martine Martin

.

GEOLOGIC HYDROGEN PROGRAM @ ARPA-E

Role of ARPA-E on development of Geo-Hydrogen

- Unleash American ingenuity to assess the challenges and opportunities of Geo-H2 as a new primary source of energy.
- Rapidly answer the question "Is there a there there?".
- Create the environment that enables the fast deployment of the technology; address risks and develop mitigation strategies early on.
- Establish US global leadership in the development GeoH2

Current state of the technology

Despite all recent activity, GeoH₂ technologies are *high risk* and *TRL is low*

Establish exploration and characterization methodology, technology

Develop know-how to stimulate H_2 evolution

Engineering for subsurface H₂ development

Why is now the right time? ARPA-E Approach

Program Aspirations

	Target	
Cost @ wellhead	<\$1/kg H ₂	
Vellhead purity	>20% (volumetric) H ₂	
GHGe footprint	<0.45 kg CO ₂ e/kg H ₂	
Farget deposit potential	>10 million tonnes of H_2	
Potential production/deposit	>1 million M ³ /day (82 tonnes/day or 30,000 tonnes/year)	

Comparison to the current state of the art?

Sources

International Energy Agency, 2022, (<u>Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050</u>). Hydrogen Council, 2021, (<u>Hydrogen Decarbonization Pathways | Hydrogen Council</u>).

What is the current state of the art?

Sources

International Energy Agency, 2022, (<u>Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050</u>). Hydrogen Council, 2021, (<u>Hydrogen Decarbonization Pathways | Hydrogen Council</u>).

Production of Geologic Hydrogen Through Stimulated Mineralogical Processes

Subsurface Engineering for Hydrogen Reservoir Management

ARPA-E Program Awardees: \$24 M

Production of Geologic Hydrogen through Stimulated Mineralogical Processes

Subsurface Engineering for Reservoir Management

Methodology for Life-Cycle Analysis for Geological Hydrogen (GREET)

GEOLOGIC HYDROGEN PROGRAM QUESTIONS TO BE ADDRESSED

Fe (II) + H_2O Fe (III) oxides and H_2

Can the oxidation of Fe(II) to Fe(III) be catalyzed in situ?

How important is the equilibrium, can it be shifted?

- What is the impact of mineralogy?
 - Impact of trace elements?
 - Microstructure?

Are there other H₂ forming reactions to be developed?

Physical challenges

- How to increase/maintain surface area?
- Volume expansion from the reaction
 - Olivine to serpentine: 30%
 - Wuestite/Fayalite/Siderite: ?
 - Ferro magnesite: ?
 - Inducing seismicity?
- Can we separate H₂ from water in situ?
 - Engineer voids to collect?

Natural accumulation challenges

- ▶ What happens when we begin to pull out H₂?
- How fast does it replenish?
 - How pure is the gas source?
 - Will concentration increase with withdrawal?
- Can we force it out with a sweeping gas?
- Can we drill down to the natural source in the basement?

THE FUTURE

Can we unlock it?

