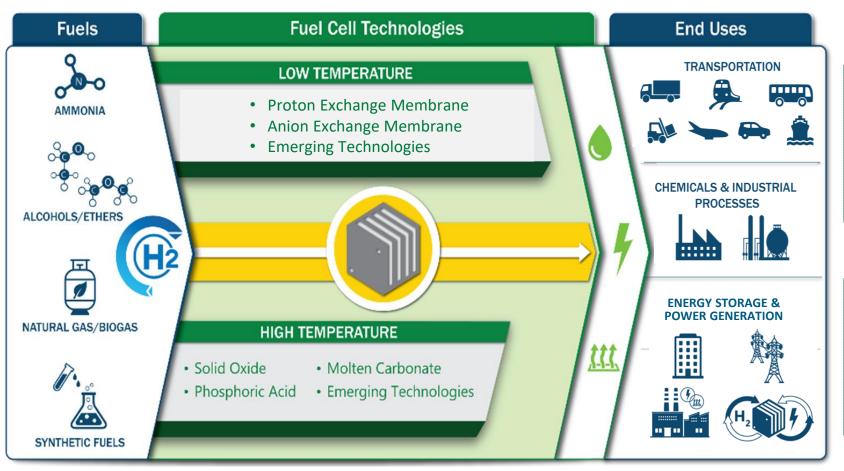


Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

## **Fuel Cell Technologies Overview**

#### Dr. Dimitrios Papageorgopoulos, HFTO – Fuel Cell Technologies Program Manager

2024 Annual Merit Review and Peer Evaluation Meeting


May 7, 2024 – Arlington, VA



## The Hydrogen and Fuel Cell Technologies Office (HFTO)

| Mission                                             | demons<br>hydrog                                                                                        | , development, a<br>stration (RD&D) o<br>gen and fuel cell<br>ogies to advance | of •                      | Reduction Across Sectors<br>le and Equitable Energy Future                                   |                             |  |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------|-----------------------------|--|
|                                                     | HFTO Subprograms                                                                                        |                                                                                |                           |                                                                                              | <b>Searthshots</b> Hydrogen |  |
|                                                     | Hydrogen<br>Technologies                                                                                |                                                                                | hnologies                 | Systems Development &<br>Integration                                                         |                             |  |
| Hydrogen<br>Production<br>Hydrogen<br>Infrastructur |                                                                                                         | Materials &<br>Components<br>Systems                                           |                           | Transportation<br>Chemical & Industrial<br>Processes<br>Energy Storage<br>& Power Generation | Enabling                    |  |
| Sy                                                  | Systems Analysis                                                                                        |                                                                                | Safety, Codes & Standards |                                                                                              | H2@Scale.                   |  |
| Crosscutting /                                      | Crosscutting / Enabling: manufacturing, supply chain, workforce, regional clean H <sub>2</sub> networks |                                                                                |                           |                                                                                              | U.S. Department of Energy   |  |

## **Fuel Cell Technologies**

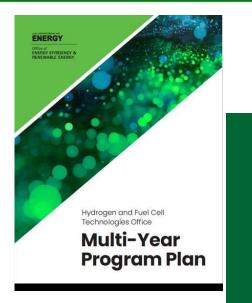


<u>Goal</u> Fuel cells that are competitive with incumbent and emerging technologies across applications

*Efforts support clean* H<sub>2</sub> *end-use and* 

broader market adoption objectives

Hydrogen Strategy and Roadmap


as outlined in the DOE National Clean

Fuel cells use a wide range of fuels and feedstocks; deliver power for applications across multiple sectors; provide long-duration energy storage for the grid in reversible systems. DOE National Clean Hydrogen Strategy and Roadmap (energy.gov)

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE

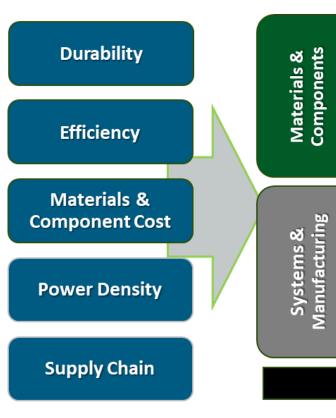
## **Updated Multi-Year Program Plan (MYPP)**



The MYPP defines barriers, develops market-driven targets, and lays out plans with key RD&D priorities and milestones for meeting those targets

| Strategic Priorities                                                                                                                                                                                                     | Near-Term | Mid-Term | Longer- |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|---------|
|                                                                                                                                                                                                                          | 2025      | 2030     | Term    |
| <ul> <li>Efficient, durable and cost-competitive fuel cells for<br/>heavy-duty applications</li> <li>Advanced materials and components for next-generation<br/>fuel cell technologies in diverse applications</li> </ul> |           |          |         |

Crosscutting/Enabling: Manufacturing, Supply Chain, Workforce, Regional Clean H<sub>2</sub> Networks


Includes baselines and targets that are periodically assessed and adjusted as needed based on updated information, analysis, and stakeholder feedback

| End Use                      | 2023 Status                                                                                             | 2030 Target                                                                                                 | Ultimate Target                                                                                              |
|------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Heavy-Duty<br>Transportation | •Cost \$170/kW<br>•Durability >10,000 h<br>•Peak efficiency 64%<br>•PGM loading >0.4 mg/cm <sup>2</sup> | •Cost $80/kW$<br>•Durability 25,000 h<br>•Peak efficiency 68%<br>•PGM loading $\leq$ 0.3 mg/cm <sup>2</sup> | •Cost $60/kW$<br>•Durability 30,000 h<br>•Peak efficiency 72%<br>•PGM loading $\leq$ 0.25 mg/cm <sup>2</sup> |

www.energy.gov/eere/fuelcells/mypp

## **RD&D Strategy**

Fuel cell challenges



Are strategically addressed through....

High activity, durable catalysts & electrodes Innovative membranes & ionomers Durable high performance MEAs Advanced bipolar plates, GDLs and coatings System design & operating conditions Standardized stacks and modular systems

Improved manufacturing & supply chain

Advanced BOP components & subsystems

Recycling of components, stacks, & systems

Supporting analysis & modeling

#### **Emphasis:** H<sub>2</sub> **PEMFCs for heavy-duty applications**

www.energy.gov/eere/fuelcells/mypp

... and supported by market-driven targets

#### 2030 Example Targets

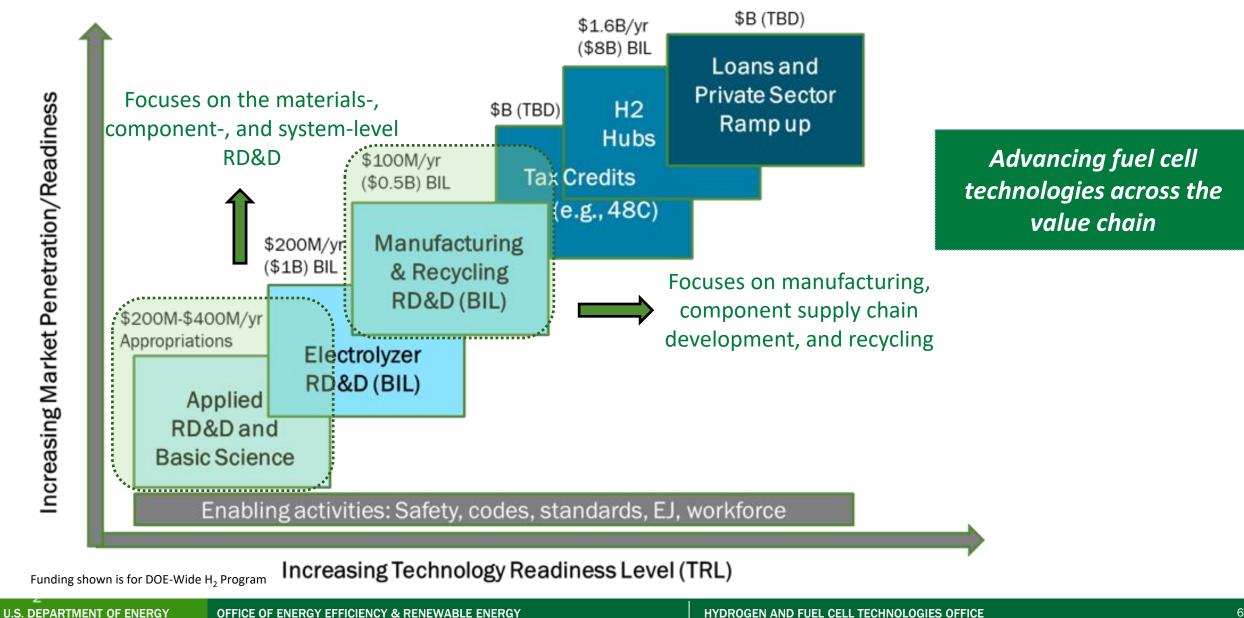
#### **Fuel Cells for Long-Haul Trucks**

- \$80/kW system cost
- 25,000-hour durability

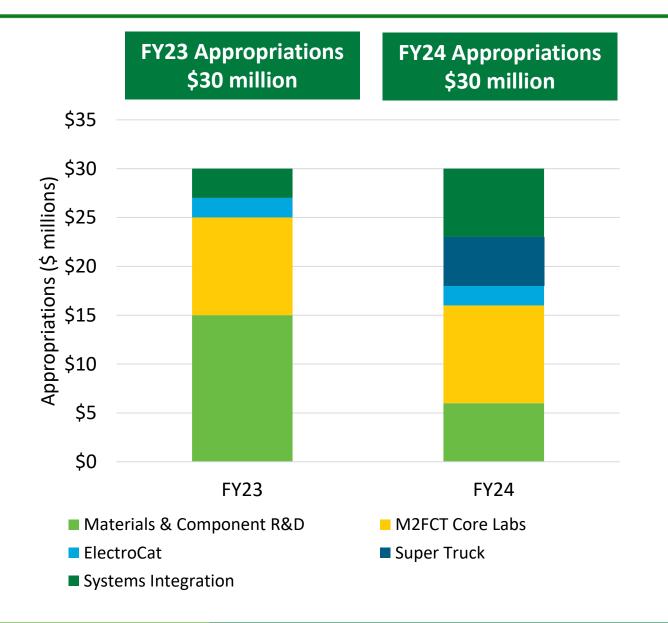
#### **Fuel Cells for Stationary Power**

- \$1.000/kW system cost
- 80,000-hour durability

#### **Fuel Cell Manufacturing Capacity**


- 20,000 stacks/yr\*
- 2,400 MEAs/hr

#### **Reversible Fuel Cells for Energy Storage**


- \$1.800/kW system cost
- 40,000-hour durability

\* In a single manufacturing system

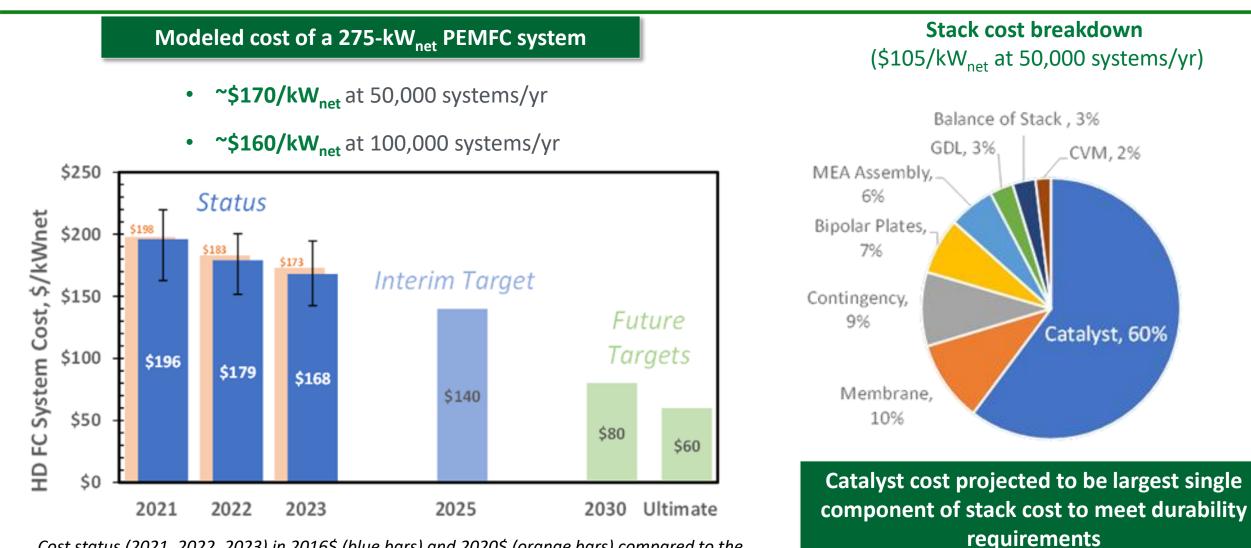
## Hydrogen Program RDD&D Portfolio across TRLs



## **Fuel Cell Technologies Funding**

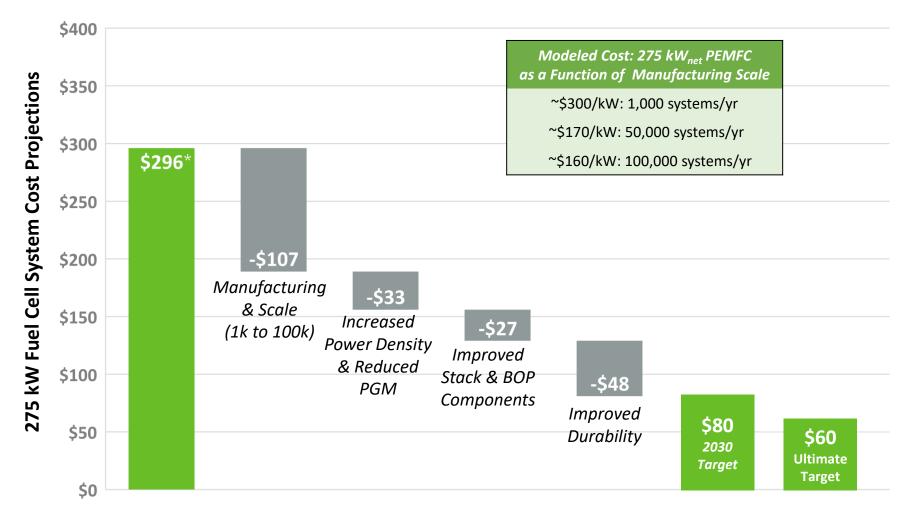


#### **Program Direction**


Fuel cell materials, components, integration, and manufacturing with a focus on low cost, enhanced durability and efficiency, and a robust supply chain for HD applications

- Low-PGM catalysts and MEAs
- Membranes, ionomers
- PGM-free catalysts and electrodes
- Bipolar plates, gas diffusion layers
- Stacks, system BOP
- System analysis
- Manufacturing, component supply chain development, and recycling

FY25 Request \$25 M IIJA Clean H<sub>2</sub> Manufacturing & Recycling Provisions \$100 M/year over 5 years


## Analysis Guides RD&D

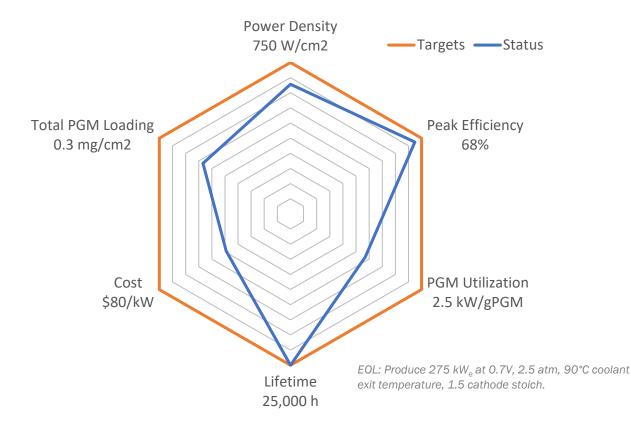
### Heavy Duty Truck Fuel Cell Durability-Adjusted Costs (for 25,000-hour lifetimes)



Cost status (2021, 2022, 2023) in 2016\$ (blue bars) and 2020\$ (orange bars) compared to the interim target (2025) for a manufacturing volume of 50,000 systems/yr. 2030 and ultimate targets are at 100,000 systems/yr.

## **Emphasis on Key Areas Drives Cost Reduction**




\* For 1,000 systems/yr in 2020\$

Pathway towards cost target requires both technology improvements and manufacturing innovations

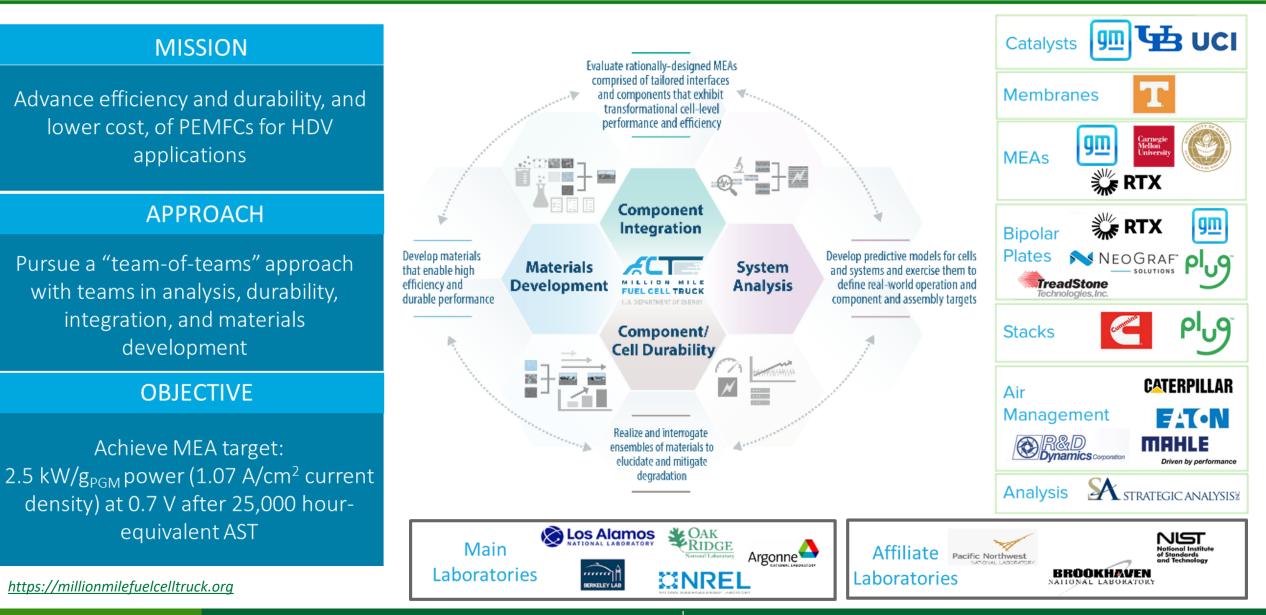
U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

## **Analysis Assumptions Focus on Required Durability**

#### 25,000-hour lifetime is a primary requirement



#### Analysis notes


- Stack oversized by 67% and overloaded with PGM for 25,000-hour electrode lifetime
- Analysis addresses heat rejection requirements
- Active and stable catalysts are needed to meet 750 mW/cm<sup>2</sup> power density at EOL with 0.3 mg/cm<sup>2</sup> total PGM loading

#### Targets need to be met concurrently to achieve fuel cell competitiveness for heavy-duty applications

# Fuel Cell RD&D Highlights

## Million Mile Fuel Cell Truck Consortium (M2FCT)

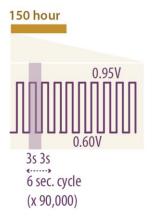




## **Accelerated Stress Test (AST) Development**



#### Developing 25000-hour equivalent ASTs for HD fuel cells


#### COMPLETED

Catalyst AST 90,000 Cycles = 150 hours

Catalyst H<sub>2</sub> Membrane Catalyst N<sub>2</sub> H<sub>2</sub>/N<sub>2</sub> at 200/200 sccm

Temperature: 80°C Humidity: 100%/100%

**Cycle:** Square Wave Upper/Lower Potential Limit (UPL/LPL)



#### PROPOSED

MEA AST 30,000 Cycles + 30,000 Cycles = 125 hr + 500 hr = 625 hours



H<sub>2</sub>/Air at 1.5 Stoich @ 1.5A/cm<sup>2</sup>

#### Temperature: 90°C

Humidity: 100%/100% RH (Part I) 30%/ 30% RH (Part II)

 Cycle: Square Wave
 using potential cycling, w

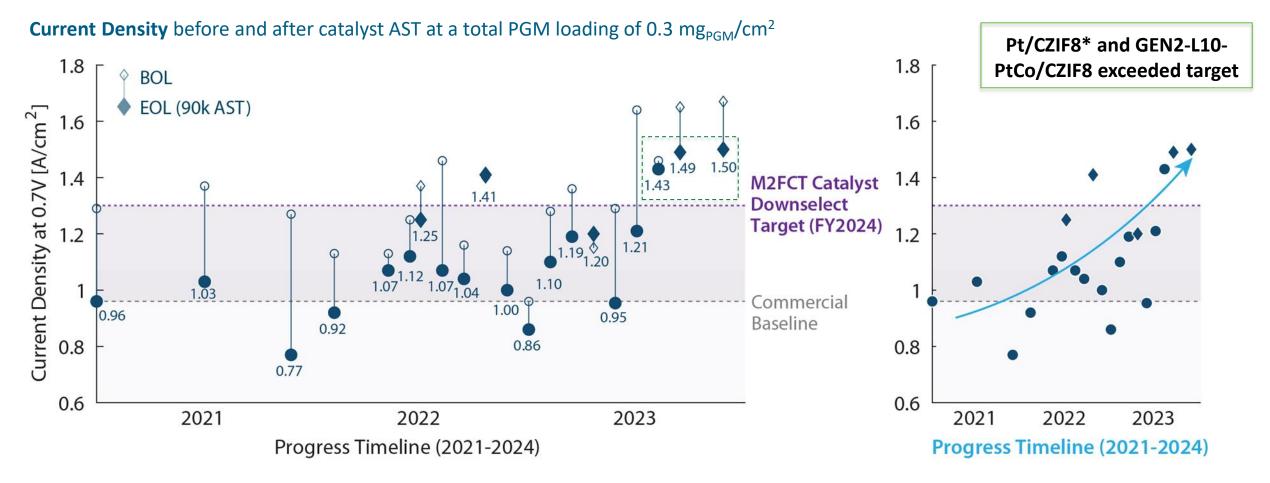
 (Part I) Upper/Lower Potential Limit (UPL/LPL)
 stressing the membrane

 (Part II) Lower/Upper Density (LCD/UCD)
 Following the catalyst de

#### 125 hour 500 hour Part I Part II LCD $0.02 \text{ A/cm}^2$ UPL 0.925V V I PI 0.675V $1.5 \,\mathrm{A/cm^2}$ UCD 5s 10s 305 305 15 sec. cycle 60 sec. cycle (x 30,000) (x 30,000)

To accelerate catalyst degradation using potential cycling, without •• stressing the membrane

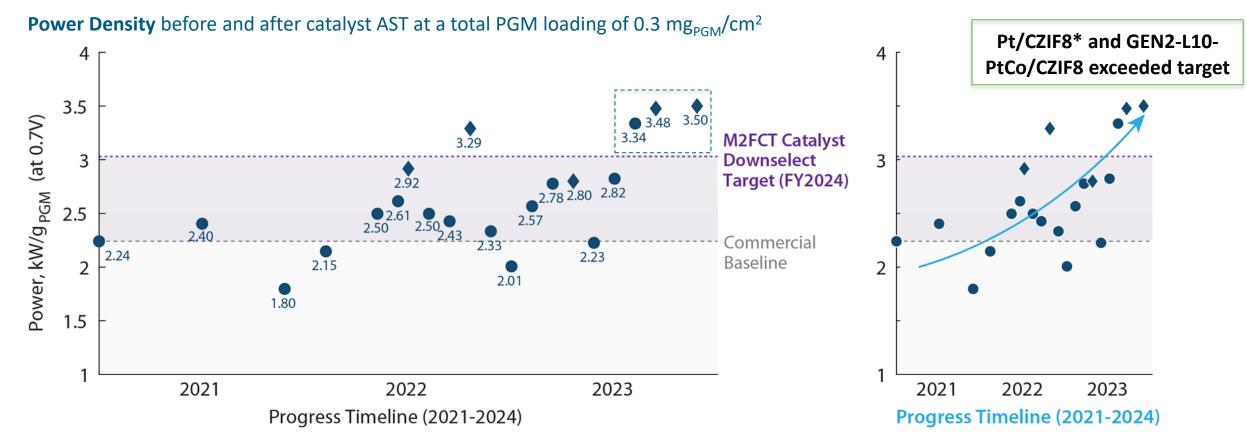
 Following the catalyst degradation (potential cycling)
 switch to accelerate membrane degradation using current cycling at lower inlet RH (30%) and higher temperature ASTs developed with stakeholder input and shared through the International Durability Working Group (iDWG)


#### Finalized ASTs to be published on www.m2fct.org

Contact: M2FCTSC@lbl.gov

## **Catalyst Development Progress**




#### Catalyst AST implemented for material down selection



*Circles: Conventional electrode design; Diamonds: Array electrode design. Commercial baseline: Umicore Elyst Pt50 0550 Pt/HSC*  Conditions: 0.7V, 250 kPa, 85% RH,  $H_2/15\% O_2$ . \*Performance also demonstrated with Pt/CZIF8 scaled to >10g batch

## **Catalyst Development Progress**





Circles: Conventional electrode design; Diamonds: Array electrode design.

Commercial baseline: Umicore Elyst Pt50 0550 Pt/HSC

Conditions: 0.7V, 250 kPa, 85% RH, H<sub>2</sub>/15% O<sub>2</sub>.

\*Performance also demonstrated with Pt/CZIF8 scaled to >10g batch

#### Improved catalyst performance by over 55% in an MEA compared to commercial baseline

## **New M2FCT Industry and University Partner Projects Selected**

High Performing and Durable Membrane Electrode Assemblies for Medium- and Heavy-Duty Applications

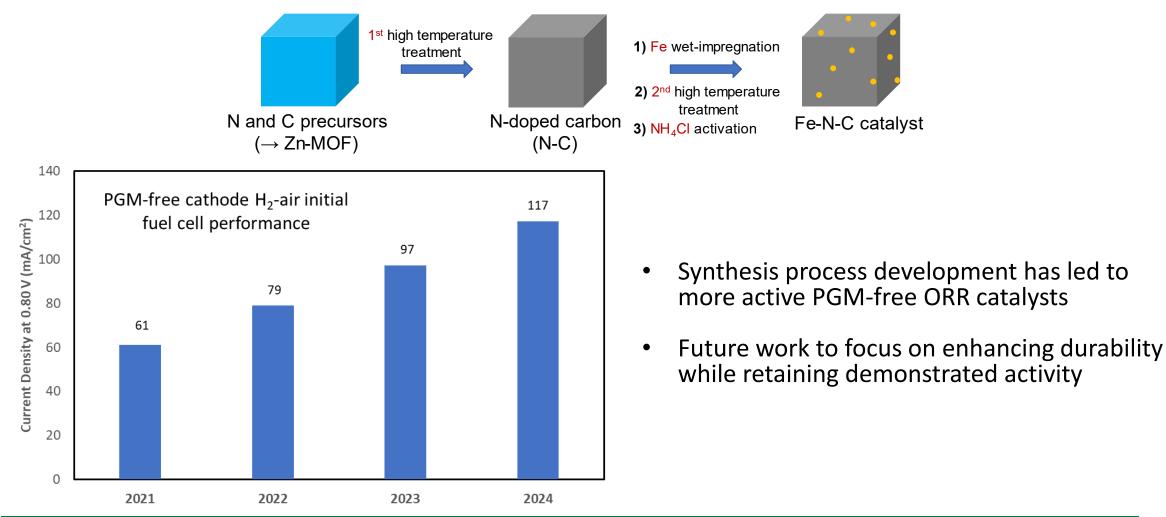


**General Motors LLC** Dr. Anu Kongkanand Selective Transport Layers for PEM Fuel Cell and Electrolyzer MEAs



**RTX** *Dr. Robert Darling* High Performance Hydrocarbon Membrane Electrode Assembly




**University of Hawaii at Manoa** *Dr. Yunfeng Zhai* High Performing and Durable MEAs with Novel Electrode Structures and Hydrocarbon Proton Exchange Membranes

https://www.energy.gov/eere/fuelcells/selections-hydrogen-and-fuel-cell-technologies-office-funding-opportunity

## **PGM-Free Catalyst Performance Enhancement**



#### Two-step, ammonia chloride activation synthesis of Fe-N-C catalyst:



Improved PGM-free cathode H<sub>2</sub>-air initial fuel cell performance by >90% compared to 2021 baseline

## Hydrogen Fuel Cell Heavy Duty Truck Projects – SuperTruck 3

# <section-header>

#### Goals:

- Demonstrate 2 total (Class 8) HD longhaul fuel cell electric trucks (B-sample & final truck demo)
- 6.0 mi/kg H<sub>2</sub> fuel economy
- 600-mile range (onboard LH<sub>2</sub> storage)
- 65,000 pounds GVW
- 25k hour lifetime

#### Key Accomplishments:

- Commissioned fuel cell system
- 1<sup>st</sup> complete B-sample prototype truck expected in 2024
- sLH<sub>2</sub> fueling protocol developed

<image>

#### <u>Goals:</u>

- Demonstrate 5 total (Class 4-6) MD vocational trucks
- 300+kW<sub>net</sub> vehicle power, H<sub>2</sub> PEMFC + Li-Ion battery
- 300-mile range (700 bar H<sub>2</sub> storage)
- 10K/20K pounds payload/tow capacity
- Meet or exceed 7.3L gas performance feel

#### Key Accomplishments:

- Commissioned fuel cell system
- 1<sup>st</sup> complete vehicle build expected in May 2024
- Over 20 patents filed

## gm general motors

Southern Company



#### Goals:

- Demonstrate 8 total (Class 4-6) MD trucks
   0 4 fuel cell & 4 battery electric trucks
- Fuel Cell System Goals:
  - $\circ$  65% peak efficiency
  - o <\$80/kW system cost (100K units/yr)</pre>
  - $\odot$  20K-30K hour lifetime
- Demonstrate microgrid with electrolyzer & fuel cell (H<sub>2</sub> fueling & fast charging)

#### Key Accomplishments:

- Commissioned fuel cell system
- Early demo fleet build expected in 2024
- Path to >62% peak efficiency & >50% efficiency at full power

Images above are not final product and are subject to change

#### U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

#### HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE

\*Co-funded with Systems Development & Integration (SDI); projects presented in SDI session

# Manufacturing & Recycling Highlights

## Sec. 40314, EPACT Sec. 815 and Related IIJA Provisions

|                  | <b>"Clean H<sub>2</sub> Electrolysis Program":</b> BIL Includes RDD&D<br>across multiple electrolysis technologies, compression,<br>storage, drying, integrated systems, etc <u>directly supports</u><br><u>Hydrogen Shot</u> | Sec. 40314 (EPACT Sec 816):<br>Clean Hydrogen Electrolysis<br>Program; \$1 Billion over 5 years.<br>Goal \$2/kg by 2026 |  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|
| Raw<br>Materials | "Clean Hydrogen Manufacturing and Recycling"<br>Processed<br>Materials Subcomponents End Product                                                                                                                              | Sec. 40314 (EPACT Sec 815):<br>Clean Hydrogen Manufacturing<br>& Recycling                                              |  |
| For              | cus on manufacturing and end of life/recycling RD&D                                                                                                                                                                           | \$0.5 Billion over 5 years                                                                                              |  |
|                  | <b>Regional Clean H<sub>2</sub> Hubs</b> : At least 4 Hubs, geographic diversity, includes renewables, fossil + CCS, nuclear, for                                                                                             | Sec. 40314 (EPACT Sec 813):<br>Regional Clean Hydrogen Hubs;                                                            |  |

diversity, includes renewables, fossil + CCS, nuclear, for clean hydrogen production, multiple end use applications.

> **Sec. 40314 (EPACT Sec 814:** Strategy & Roadmap and Sec. 40315 (EPACT & Roadmap and Sec. 40315 (EPACT Sec 822): Clean Hydrogen Production Qualifications)


**National Hydrogen Strategy and Roadmap:** Includes working with EPA to develop an initial clean hydrogen production standard per Sec.  $822 \le 2 \text{ kg CO}_2 \text{e/kg H}_2$ 

**U.S. DEPARTMENT OF ENERGY** 

\$8 Billion over 5 years

## **Manufacturing Advancements to Enable Economies of Scale**

#### Cost Reduction Opportunities (From ~\$300/kW @ 1k to \$80/kW @100k systems/yr)



• Minimal automation.

systems/year 10,000 systems/year\* Near-term Capacity Increase: Continuous processes Automated stacking, material handling

100,000

- In-line inspection
- Introduction of AI
- Streamlined acceptance testing.

 $\star$  Two HD stacks per system correspond to 20,000 stacks/yr

Long-term Capacity Increase:

- Further increased throughput and manufacturing advancements
- Improved automation and integrated material handling
- Fully integrated IoT, metrology and AI
- Multiple manufacturing systems.

#### Needed production volumes will require manufacturing capabilities not seen in the field to date

## **Targets for HD Fuel Cell Components and Stack Production**

Targets support near-term manufacturing capacity increase

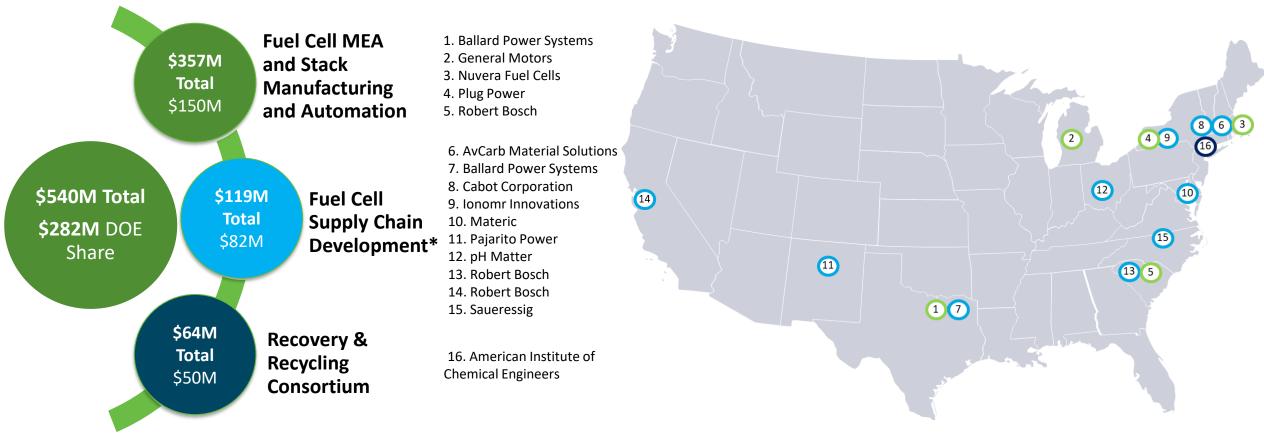
Established 2030 target to enable market lift-off

Estimated component manufacturing rates commensurate with 20,000 stacks/yr

HD fuel cell manufacturing capacity:

20,000 HD fuel cell stacks per year

in a single manufacturing system, while still aiming towards the 2030 DOE targets for cost, durability, and efficiency


Two HD stacks per system would correspond to 10,000 systems/yr

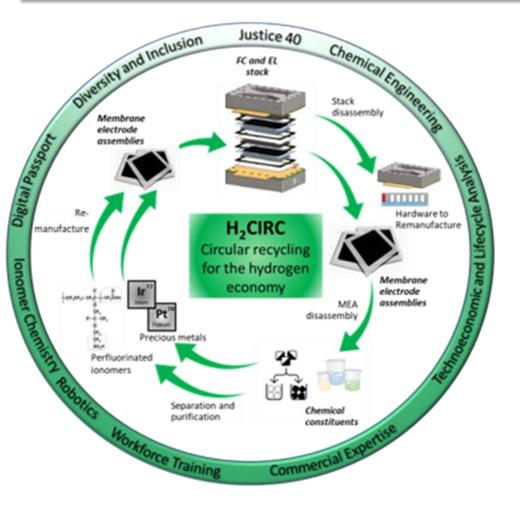
| Component | Rate                         |
|-----------|------------------------------|
| Stack     | 6 stacks/hour                |
| MEA       | 2,400 MEAs/hour              |
| BPP       | 2,400 BPPs/hour              |
| GDL       | 650,000 m <sup>2</sup> /year |
| Membrane  | 370,000 m <sup>2</sup> /year |
| Catalyst  | 1,300 kg PGM/year            |

Scaled-up fuel cell manufacturing will also require a reliable supply of materials and components

## **BIL FOA Selections**

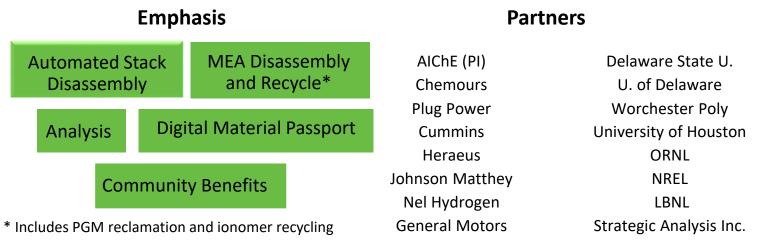
#### Clean Hydrogen Manufacturing and Recycling




#### \*GDLs, Catalysts, Bipolar Plates, Non-PFSA Membranes

#### Enabling fuel cell manufacturing of 14 GW/yr

https://www.energy.gov/articles/biden-harris-administration-announces-750-million-accelerate-clean-hydrogen-technologies


## **Circular Recycling for the Hydrogen Economy Consortium (H<sub>2</sub>CIRC)**

#### Developing a robust domestic recovery and recycling capability for electrolyzers and fuel cells



**Goal:** Demonstrate pilot-scale validation activities over the entire recycling process along with analysis, digital passport, and community benefits/energy equity.

**Impact:** Established approach for recycling electrolyzers and fuel cells, long-term supply chain security, and environmental sustainability.



#### Sustainable processes to recover and reuse >70% of ionomer and ≥95% of PGMs

## Roll-to-Roll (R2R) Consortium



Advancing efficient, high-throughput, and high-quality manufacturing processes



#### **Task Areas**

- Materials Scale-Up Science
- MEA Fabrication
- Quality Control
- Process Modeling and AI/ML
- Characterization for Manufacturing Environment
- Technoeconomic Analysis

#### **Request for CRADA Proposals**

- Collaborative projects with Industry and Labs
- Concept Papers Due June 3



http://www.nrel.gov/hydrogen/r2r-crada-call.html

## **Tribal College Engagement with Hydrogen Technologies**

#### Pilot project to strengthen national lab and tribal collaboration on clean H<sub>2</sub> manufacturing RD&D



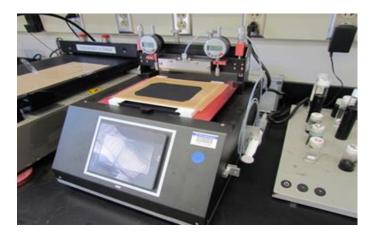


Turtle Mountain Community College





Collaboration with Navajo Technical University supports clean hydrogen careers




Internships offer opportunities in hydrogen and fuel cell research

https://discover.lanl.gov/news/1130-ntu-collaboration/

#### Native American Scholars make meaningful contributions to the team

Using AM for Complex Manufacturing Challenges



Modification to Slot Die Coater Electrode Manufacturing Overcomes Challenge

# Collaborations, Milestones, Team

## **Collaboration Network**

#### Fostering technical excellence, economic growth and environmental justice

| Industry Engagement                                                                       | Cross-DOE Collaborations<br>(Including H <sub>2</sub> Joint Strategy Team Conversion Working Group) |                                        |                    |                                   |                               | Cross-Agency<br>Collaborations                                  |
|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------|--------------------|-----------------------------------|-------------------------------|-----------------------------------------------------------------|
| US DRIVE and 21 <sup>st</sup> Century<br>Truck Partnerships:<br>Fuel Cell Joint Tech Team | EERE/VTO:<br>SuperTruck                                                                             | ARPA-E:<br>Advanced Fuel Cell Concepts |                    | s                                 | FECM:<br>SOFCs/RFCs           | DOC/NIST<br>Fuel Cell Neutron Imaging                           |
| M2FCT                                                                                     | AMMTO:                                                                                              | ME                                     | MESC:              |                                   | BES:                          | DOT/FTA (Fuel Cell Buses)                                       |
| ElectroCat                                                                                | Manufacturing & Supply Chain<br>Recycling                                                           |                                        | r Chain            | Fundamental R&D                   |                               | Hydrogen Interagency<br>Taskforce (H <sub>2</sub> Supply Chain) |
| Workshops/RFIs                                                                            | DOI                                                                                                 | E Cross-Cut                            | ting Initia        | tives                             |                               |                                                                 |
| FCHEA                                                                                     | Critical Materials<br>Collaborative                                                                 | SBIR/STTR E                            |                    | Energy Storage Grand<br>Challenge |                               |                                                                 |
|                                                                                           | НРС                                                                                                 | EM                                     | Ν                  | Spa                               | ace-related                   |                                                                 |
|                                                                                           | IIJA Provisions                                                                                     |                                        |                    |                                   |                               |                                                                 |
|                                                                                           | International Collaborations                                                                        |                                        |                    |                                   |                               |                                                                 |
|                                                                                           | IEA Technology<br>Collaboration<br>Programme on<br>Advanced<br>Fuel Cells                           | M2FCT<br>AST Working<br>Group          | Electro<br>Benchma |                                   | Mission<br>Innovation<br>PFAS |                                                                 |

HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE

## **Highlights and Milestones**

| FY2023                                                                                                              | FY2024                                                                                                              | FY2025                                                                                                                                          |  |  |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Improved catalyst performance in an MEA<br>by over 45% compared to commercial<br>baseline                           | Improved catalyst performance in an MEA<br>by over 55% compared to commercial<br>baseline                           | Achieve MEA target :<br>2.5 kW/g <sub>PGM</sub> power (1.07 A/cm <sup>2</sup> current<br>density) at 0.7 V after 25,000 hour-<br>equivalent AST |  |  |
| Improved PGM-free cathode H <sub>2</sub> -air initial<br>fuel cell performance by ~60% compared<br>to 2021 baseline | Improved PGM-free cathode H <sub>2</sub> -air initial<br>fuel cell performance by >90% compared<br>to 2021 baseline | Improve PGM-free cathode H <sub>2</sub> -air fuel cell<br>performance                                                                           |  |  |
| Solicited and selected M2FCT FOA projects                                                                           | Solicited M2FCT Lab Call projects                                                                                   | Solicit and select M2FCT FOA projects                                                                                                           |  |  |
| Met durability adjusted HDV cost of<br>\$170/kW at 50,000 systems/year                                              | Meet durability adjusted HDV cost of<br>\$155/kW at 50,000 systems/year                                             | Meet durability adjusted HDV cost of<br>\$140/kW at 50,000 systems/year                                                                         |  |  |
| Solicited Sec. 815 Manufacturing and<br>Recycling projects                                                          | Selected Sec. 815 Manufacturing projects<br>and Recovery & Recycling consortium                                     | Initiate Sec. 815 Manufacturing projects<br>and launch Recovery & Recycling<br>consortium                                                       |  |  |

## The Team

**Dimitrios Papageorgopoulos Fuel Cell Technologies Program Manager** Dimitrios.Papageorgopoulos@ee.doe.gov



**Technology Managers** 

Scan for Open Positions







**Greg Kleen** Donna.Ho@ee.doe.gov Gregory.Kleen@ee.doe.gov Willam.Gibbons@ee.doe.gov

Will Gibbons

**Eric White** Eric.White@ee.doe.gov

Shaylynn Crum-Dacon shaylynn.crum-dacon@ee.doe.gov

**Open position** 

Technology Manager

**Open position Technical Project Officer** 

**Fellows and Contractors** 



**U.S. DEPARTMENT OF ENERGY** 

**OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY** 

HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE

## Join Our Clean Energy Workforce Today

#### Stop by the table outside Independence Ballroom at lunch today to learn more!

EERE is driving the clean energy revolution by funding the innovation that's building the technologies that will forever change the way energy is generated and consumed. So now is a great time to become a **Clean Energy Champion** by joining EERE today!

Together we strive to:

- > Build the clean energy economy in a way that benefits all Americans.
- Create good paying jobs for the American people.
- Overcome the technological, economic, and institutional barriers to the development of hydrogen and fuel cells.
- > Make renewable energy cost-competitive with traditional sources of energy.
- Increase access to domestic, clean transportation fuels.
- Reduce the carbon footprint of buildings.
- And so much more.

EERE is committed to building a clean energy workforce with skilled professionals from diverse backgrounds. If interested in learning more about **becoming a Clean Energy Champion & joining the Clean Energy Revolution, stop by our booth to speak with our EERE Talent Acquisition representatives today!**  EERE CAREER HOME PAGE EERE Career News Letter News Letter



# Thank You

Dr. Dimitrios Papageorgopoulos Program Manager, Fuel Cell Technologies, HFTO Dimitrios.Papageorgopoulos@ee.doe.gov

## hydrogenandfuelcells.energy.gov