

FLUIDIZED BED GASIFICATION FOR CONVERSION OF BIOMASS AND WASTE MATERIALS TO RENEWABLE HYDROGEN

Project DE-FE0032176

John Marion, Sr. Director Carbon Management & Conversion- *GTI Energy* H₂ Annual Merit Review Meeting May 6-9, 2024 – Crystal City, VA

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

GTI Energy Overview

We occupy a unique space between **tradition** and **innovation**

- Moving energy systems solutions from concept to market
- Where partners go to de-risk experimentation
- Expertise in integrated systems and low-carbon gases, liquids, infrastructure and efficiency

Valued Partners

175 +

80+ years of experience and leadership in energy production, storage, delivery and use

Research & Development

\$1B+

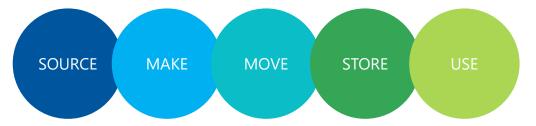
In the past decade

Leading and convening collaborative R&D

Innovation & Commercialization

1,300+

Patents

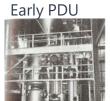

750+ **500**

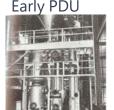
Products Licensing Agreements **10**+ Collaboratives UTD Distributed many HVPER

We develop, scale and deploy solutions in the transition to low-carbon, low-cost energy systems

GTI Energy is a leading energy research and training organization

We work collaboratively to address critical energy challenges impacting gases, liquids, efficiency and infrastructure




GTI Energy Gasification Heritage

Syngas to Products **Fuels** Chemicals Synthetic Natural Gas

Feedstocks Coal **Biomass**

HYGAS Pilot Plant

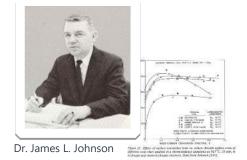
1960

Lab Facility - 1947

Syngas to Power

Integrated-Gasification Combined Cycle Gasification to Direct Super-Critical CO2 **Partial Oxidation Turbine**

Shanghai Plant - 1995



U-GAS Pilot Plant

1970

1980

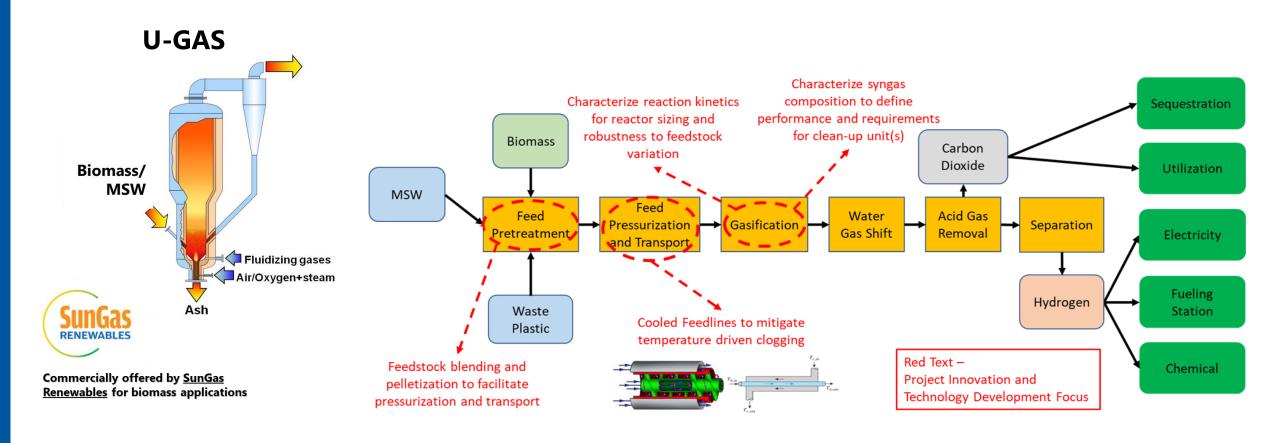
Renewable Energy Transition

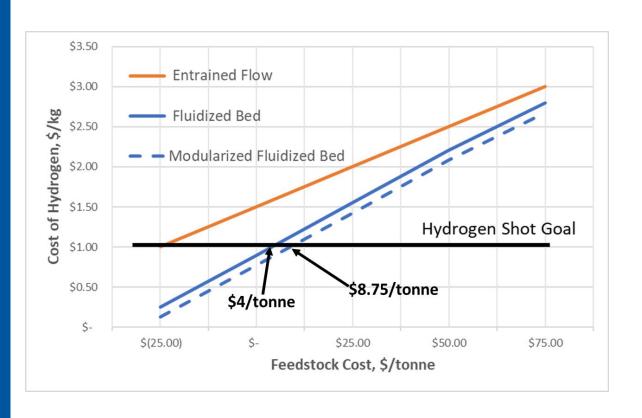
Test Facility 2010

1990

Skive - 2007 Zaozhuang - 2007

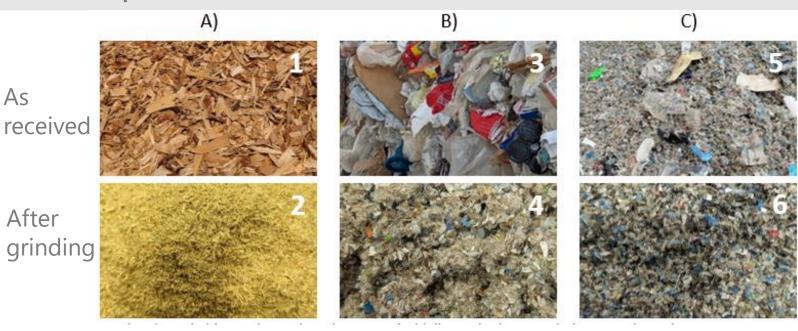
Yima - 2012




Process Concept - Biomass and Waste Materials to Renewable GTI ENERGY

 Gasification pathway advancements to enable zero emission conversion of waste feedstocks progression to TRL5

Project Concept – Leverage both Biomass and MSW



- \$1/kg of hydrogen is achievable with combined feedstock costs below \$8.75/tonne
- Challenges:
 - Biomass can reduce process carbon intensity,
 but is far too expensive (\$75-150/ton)
 - MSW could generate a considerable tipping fee (~\$58/ton) but is heterogeneous, hard to handle, and contains plastics
 - Characterization, ash properties, handling, blending and feeding issues?
- Project objectives: Feedstock characterization and pre-treatment, pressurization/injection into bed, gasification

Feedstock Procurement and Preparation

- Biomass: Loblolly Pine, Southern Georgia, USA
- MSW: Recycle Ann Arbor, MI.
 - Only paper and plastic fractions
- Plastics:
 - 90 wt%: "waste plastic" from EFS Plastic in Ontario, Canada
 - 10 wt%: film plastic meat packaging
 - Sealed Air Corporation, SC

A) Biomass (Loblolly pine), B) MSW; C) Plastic.

Example Pellets:

As

After

Biomass (50%): MSW (50%)

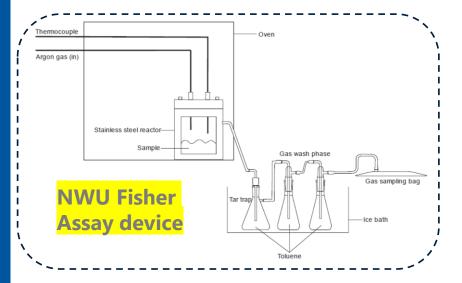
Biomass (50%): Plastic (50%)

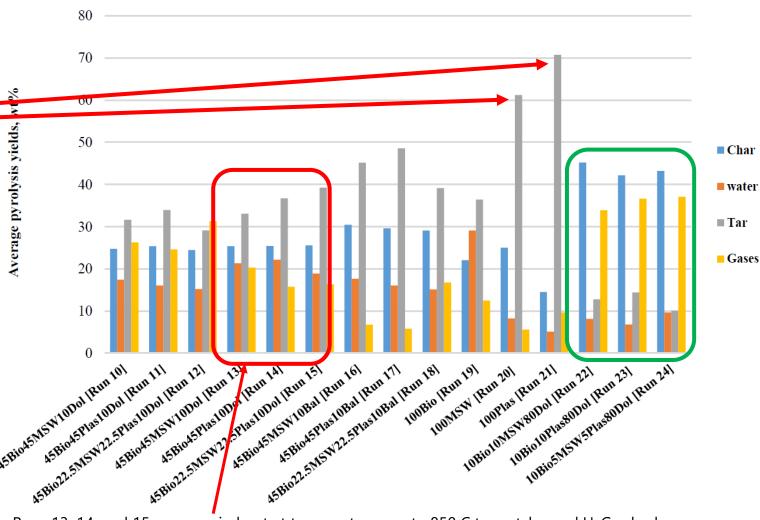
Biomass (50%): MSW (25%): Plastic (25%)

Feedstock Analysis

- Plastics content of MSW and "Plastics" samples not compatible with equipment and protocols
- Significant differences between biomass ash and ash from the two other feedstock types

Sample ID		Biomass		MSW		Plastic waste	
	Proximate An	alysis resul	t (wt.%)				
	Method	adb ¹	db^2	adb	db	adb	db
Inherent moisture content	ISO 11722: 2013 [5]	5.4	_	1.5	_	0.9	_
Ash yield	ISO 1171: 2010 [6]	1.0	1.0	12.7	12.9	7.8	7.9
Volatile matter content	ISO 562: 2010 [7]	81.1	85.8	81.1	82.3	87.2	88.0
Fixed carbon content	By difference	12.5	13.2	4.7	4.8	4.1	4.1
	Ultimate a	nalysis (wt	.%)		·		
Carbon content	ISO 17247: 2020 [8]	48.2					
Hydrogen content	ISO 17247: 2020 [8]	5.9					
Nitrogen content	ISO 17247: 2020 [8]	0.17					
Sulphur content	ISO 19579: 2006 [9]	$N.D^3$					
Oxygen content	By difference	39.4					
	Cl and F elemen	ntal analysi	s (mg/kg	g)			
Chlorine		96	5				
Fluoride		< 5	0				
	Bulk de	nsity (kg/m	1 ³)				
Bulk density		228.3		183.3		145.8	


¹⁻adb- Air dry basis; 2-db- Dry basis, 3- Not determined


Sample ID / Properties	Biomass ash	MSW ash	Plastic waste ash		
Ash fusion temperatures (oxidising atmosphere) (°C)					
Initial deformation temperature	1190	1130	1160		
Sphere temperature	1210	1150	1170		
Hemispherical temperature	1250	1190	1180		
Flow temperature	1310	1210	1210		
Ash fusion temperatures (reducing atmosphere) (°C)					
Initial deformation temperature	_	1120	1140		
Sphere temperature	_	1140	1150		
Hemispherical temperature	_	1180	1160		
Flow temperature	_	1210	1190		
XRF results (wt.%)					
Al ₂ O ₃	31.69	10.09	10.38		
CaO	5.19	17.64	20.64		
Cr ₂ O₃	0.03	1.83	0.89		
Fe ₂ O ₃	3.63	8.61	5.56		
K_2O	0.63	0.42	0.65		
MgO	2.03	1.90	4.36		
MnO	0.03	0.18	0.13		
Na ₂ O	0.15	7.16	5.68		
P_2O_5	0.92	0.36	0.38		
SiO_2	48.65	48.20	45.88		
TiO_2	1.51	2.34	3.51		
V_2O_5	0.05	0.01	< 0.005		
ZrO_2	0.09	0.01	0.02		
BaO	0.25	0.07	0.20		
SrO	0.24	0.02	0.04		
ZnO	0.02	0.09	0.16		
SO_3	4.73	0.54	0.51		
Loss on ignition	0.16	0.53	1.00		

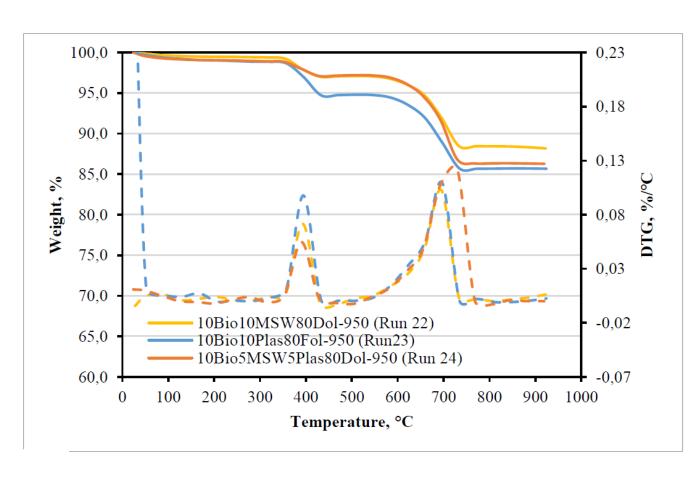
Feedstock Tar Characterization

- Work conducted at Northwest University (NWU) in South Africa
- High production of tars from 100% ____
 MSW and 100% Plastics feedstocks.
- Loaded 80% by mass catalyst in Runs 22-24; tar yield dropped! Char yield increased – promising indication

Note: Runs 13, 14, and 15 were carried out at temperatures up to 850 C to match usual U-Gas bed temperatures. All other runs in this series were at 950 C following usual NWU protocol

Feedstock Pyrolysis

- Work conducted at Innoventon lab in South Africa
- Innoventon subjected the pellet samples to a devolatilization protocol (to 650 °C), using various amounts of feedstock pellets and bed material (brown alumina or dolomite)
- The goal of the pyrolysis was to produce char and ash materials from the various feedstocks to be then tested for reactivities using a thermo-gravimetric analyzer (TGA).

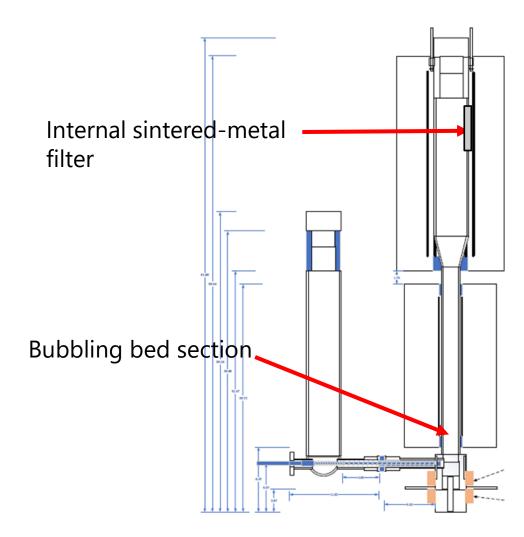


Feedstock TGA

- Work performed at NWU
- NWU CO2 Reactivity TGA carried out in connection with all chars produced from the pyrolysis work at Innoventon.
- The CO2 Reactivity TGA curves associated with chars from all three runs displayed a unique two-step mass loss trend – sequential reaction of different types of compounds comprising the char/coke on the bed material

TGA pyrolysis mass loss curves of blends of runs 22 - 24.

Feedstock Bench-scale Gasification


- Work performed in the Mini-bench Unit Gasifier (MBU-G) fluidizedbed gasifier at the GTI Energy campus in Des Plaines, IL.
- Data from South African laboratories indicated that:
 - There was little functional difference between our MSW and Plastics feedstocks – high plastics content in both, similar ash content
 - Both the MSW and Plastics feedstocks were likely to produce very high yields of tars when devolatilized – possible operational problems
 - Very low fixed carbon in all three primary feedstocks not a problem for U-GAS, though
 - Contacting with large amounts of bed material during devolatilization might react away tar and help produce clean syngas
 - An 800-850 C was likely hot enough to fully react feedstock without melting ash (slag) – desired for U-GAS

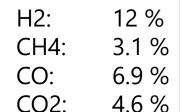
MBU-G Operation Summary

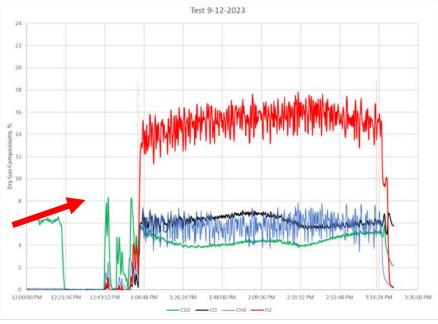
- Dolomite (industrially-relevant), Bed depth ~24" once fluidized (-80+120 Mesh)
- Dolomite was baked out at 1000 F before loading
- 2" Sched 40 pipe high-temp alloy lower section
- 4" Sched 40 pipe disengagement section
- Feed rate 7-10 grams/minute of feedstock
- 50 psig operating pressure; fluidized via N2 and steam
- Sintered-metal filter located inside vessel to remove fines
- Bed target temperature 815 C (1500 F)

MBU-G Test Plan

- Received three INL pellet sample formulations, bought a fourth type of pellet (commercial hardwood for shakedown) – crushed/sieved
- Highly successful series of four experiments
 - –8/16/2023: Shakedown commercial hardwood pellets
 - -9/12/2023: 50/50/0 (INL Pine Biomass-MSW Pellet fragments)
 - -09/29/2023: 100/0/0 (INL Pine Biomass pellet fragments)
 - 10/05/2023: 50/25/25 (INL Pine Biomass-MSW-Plastics pellet fragments)

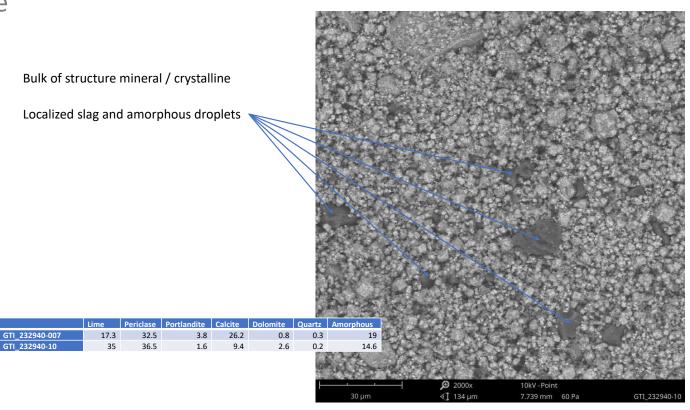
	100% Biomass - Shakedown	50% Biomass - 50% MSW	100% Biomass	50% Biomass - 25% MSW - 25% Plastics
Feedstock Proximate Analysis (as-received basis)			
Moisture (107°C) wt%:	6.1	6.45	7.25	4.08
Volatile matter as rec'd wt%:	80.1	77.91	79.62	81.6
750°C ash as rec'd wt%:	0.5	6.63	0.72	6.59
Fixed carbon (by diff.) wt%:	13.4	9.01	12.41	7.73
Feedstock Ultimate analysis (d	dry basis), no SO3 correcti	ion on ash		
750°C ash dry basis wt%	0.5	7.09	0.78	6.9
Carbon dry basis wt%	49.6	55.71	50.07	55.16
Hydrogen dry basis wt%	6.0	7.3	6.16	7.21
Nitrogen dry basis wt%	0.2	0.12	0.25	0.28
Sulfur dry basis wt%	0.0	< 0.01	0.03	0.09
Oxygen dry basis wt%	43.7	29.78	42.71	30.36
Bromide dry basis ug/g	-	<69	<65	<67
Chloride dry basis ug/g	-	2943.0	733	3184
Fluoride dry basis ug/g	-	<69	97	<67


Date: Approximate Mass Balance Closure:	100% Biomass - Shakedown	50% Biomass - 50% MSW	100% Biomass	50% Biomass - 25% MSW - 25% Plastics
(Products/Reactants), %:	95.8	99.9	101.9	100.3
Gas Bomb H2:CO Molar				
Concentration Ratio:	2.1	1.7	1.7	2.0
Yield profile as mass % of feed:	stock mass:			
Char, %	0	6.2	0.0	6.9
Hydrogen, %	5.1	4.4	5.6	4.0
Carbon Dioxide - BY				
DIFFERENCE, %	50.1	28.0	42.2	33.5
Carbon Monoxide, %	34.0	35.6	45.3	28.5
Methane, %	7.3	9.3	5.6	9.7
Ethane, %	0.6	2.0	0.2	1.6
Ethene, %	1.8	7.0	1.1	6.2
Hexanes Plus, %:	1.0	7.5	0.0	9.5

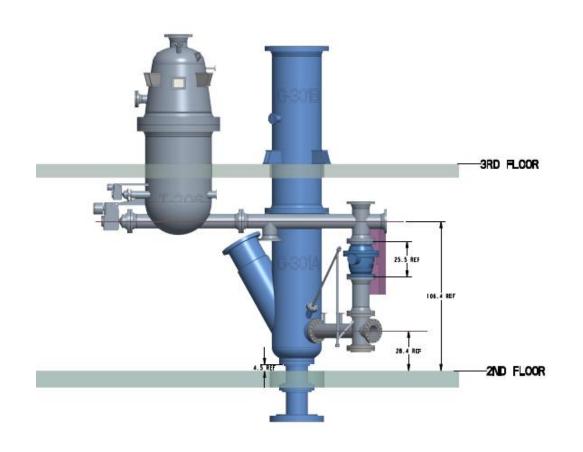

50/50/0 (INL Biomass-MSW Pellet fragments) – optimal pellet composition (carbon intensity and economics), promising MBU-G results – **chose this 50/50 pellet formulation for pilot-scale feed testing**

MBU-G - 50% Biomass - 50% MSW Trends

- 50% Biomass 50% MSW Pellet fragments -4+14 Mesh
 - This pellet formulation allows for "carbonnegative" operation at the lowest feedstock cost
 - -N2 (fl. gas). Steam. **Air O2-to-C = 0.14:1**
 - -Steam-to-carbon ratio: 0.4:1
 - -Targeted 0% O2 in effluent gas while maintaining bed temperature
 - Online and offline (GC) gas analysis and ETP
 - NO PROBLEMS WITH TARS deep bed of dolomite removed tars and prevented deposits in filters, lines, etc.

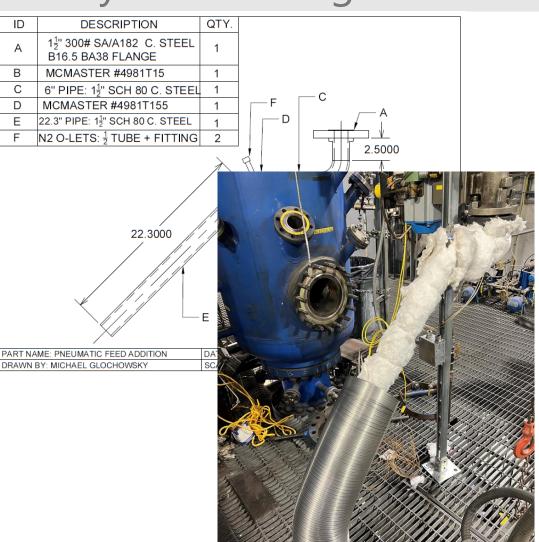


Investigated high H2/CO ratio – found no issues with instrumentation or experimental conditions


- XRD and SEM Analyses concluded:
 - Both crystalline and amorphous phases were detected, with a ratio of 95:5 mass %. This was as expected with localized slag formation from the low melting material such as biomass
 - -The bed material (dolomite) was partially transformed and decomposed to CaO and CO2 and partially un-transformed. The operating temperature of the MBU was as such and on the border of the transformation range, i.e. around 850 °C

Pilot Scale U-GAS Feed System Testing

• Both the pilot U-GAS pneumatic feed and mechanical screw feed configurations have been tested.



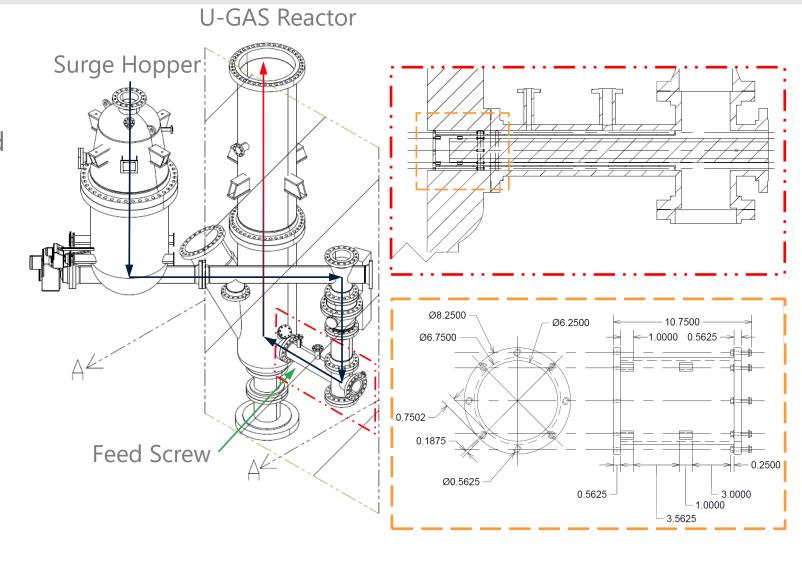
Pilot Scale U-GAS Pneumatic Feed System Testing

- Tested U-GAS Pneumatic feedstock injector
- GTI modified the pneumatic transfer pipe to accommodate pellets instead of powders – added electrical heating to simulate U-GAS operational conditions/pellet softening
- Supplied maximum transport gas velocity allowed by established U-GAS protocols
- Higher gas velocities not compatible with fluidization regime of the bed => excessive local cooling
- Pellets are simply too large not mobile at relevant gas velocities – definitive result
- Did not heat the pneumatic feeder outlet during these tests ambient temperature only

Pilot Scale U-GAS Screw Feed System Testing

- 40 rpm, pellets design rate 1200 lbs/hr
- Screw assembly features a 310 SS shroud at the front end

 feedstock passes through the shroud and into the bed
 of the gasifier
- The screw was re-oriented to move feedstock pellets without sending them into the U-Gas vessel
- Electrical heating system and insulation installed around the shroud – up to 500 F operating temperature available – 1254 W of heating
- Objective: identify temperature at which pellets soften, disintegrated and/or agglomerate in the shroud
- Excellent results: Even at ~500 F, no effect of heating on feedstock was noted – tested 1200 lb/hr down to 300 lb/hr; no change in pellet morphology at any of the temperatures tested



Cooled Shroud Design

Purpose

 Design a shroud modification to ensure shroud tip does not exceed 350°C - Avoid feedstock softening and plugging injector screw

Next Development Steps for U-GAS

- <u>Biomass and MSW pellets (50% / 50%)</u> benchtop gasification work has been successfully demonstrated at the GTI Energy fluidized bed mini-bench unit gasifier (MBU-G) under project <u>DE-FE0032176.</u>
- Pilot-scale feeding of <u>mixed biomass and MSW pellets (50% / 50%) has been successfully demonstrated</u> at the U-GAS pilot-scale facility under project <u>DE-FE0032176</u>.
- Technology is ready to move on to pilot-scale gasification testing!! \rightarrow Establish pathway to produce net zero H₂ at \$1/kg.

Define Supply Chain for 50% Biomass / 50% MSW pellets

500 hours of Pilot gasification testing

Commercial System Optimization Study

GTI Energy develops innovative solutions that transform lives, economies, and the environment