Development of Stable Solid Oxide Electrolysis Cells for Low-cost Hydrogen Production

Contract Number: DE-FE0032105

P.I.: S. Elangovan, Co-P.I.: Jenna Pike

Tyler Hafen, Dennis Larsen,

Joseph Hartvigsen, OxEon Energy Team

Dr. Olga Marina, PNNL

Support: NASA, DOE

Annual Merit Review and Peer Evaluation Meeting U.S. Department of Energy Hydrogen Program

07 May 2024

DOE NETL Project Manager: Drew O'Connell

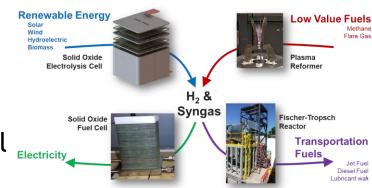
This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Beyond Current Potential

Company Background

Utah, USA R&D/Manufacturing - 2017

- Office, laboratory, and manufacturing facility (24,000 ft²)
- NASA, DOE, DOD and commercial contracts
- Tape casting, cell and stack production, and testing
- End-to-end power to synfuels pilot plant


Image credit NASA/JPL-Caltec

Solid Oxide Fuel Cell and Electrolysis Stacks

- Longest running solid oxide fuel cell & electrolysis group
- Only flight qualified, TRL 9 SOEC unit with active NASA demonstration on Mars
- 30kW/10kW and 20kW/10kW reversible SOC system test programs

Fuel Reformation and Generation

- Plasma Reformer H₂ or syngas from flare gas; digester gas conversion; clean-up bio-gasification
- Fischer-Tropsch Reactors Modular design for sustainable fuel production from H₂ and syngas

Project Objective

Test solid oxide electrolysis cell (SOEC) stack in a laboratory test bed

- Show improved performance over baseline stacks
 - Robustness,
 - Reliability,
 - Endurance,
 - Hydrogen purity, and
 - Hydrogen production at elevated pressure of 2 to 3 bar.

Project Goals

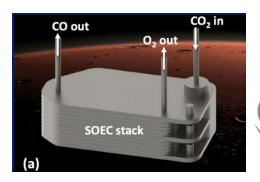
Robustness

- Capability for thermal cycling of a stack
- Redox cycling of fuel electrode in a stack
- Production of hydrogen at elevated pressure
- Long term stability
 - Projected lifetime of > 40,000 hours
- Improved performance over baseline
 - Reproducibility and lower polarization by electrode modification

Robustness

Redox Tolerant Fuel Electrode - Background

Background: MOXIE Program Overview

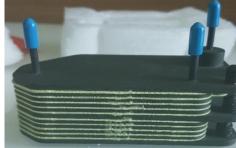

<u>Mars OX</u>ygen <u>ISRU Experiment for electrolysis of Mars atmosphere CO_2 to $CO + O_2$ </u>

First of any kind of demonstration of <u>In-Situ Resource Utilization (ISRU)</u> technologies to enable propellant and consumable oxygen production from the Martian atmosphere

Successfully completed on Perseverance Rover mission

MOXIE is a $\sim 0.5\%$ scale prototype of expected final O₂ production rate

TRL 9 SOEC unit


Solid Oxide Electrolysis (SOXE) Development Team Supported by NASA through the Jet Propulsion Laboratory (JPL)

Flight Qualification

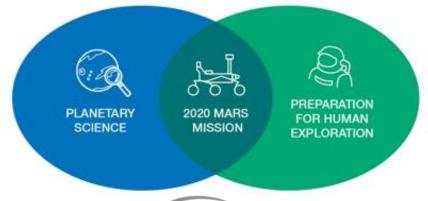
Baseline Performance

• 21 consecutive stacks built with aerospace quality standards and traceability having consistent baseline performance on dry CO₂ and 99.9%+ O₂ purity

Cycling Performance

- 3 stacks with 21 cycles of identical test procedure having varying cycle-to-cycle flow rates and final cycle averages of 10.11 g O₂/hr production and 99.8% purity Targets exceeded
- 1 stack to 61 cycles with >99.6% purity at a controlled production rate of 6 g/hr at 55g/hr CO₂ feed

Structural Stability Testing

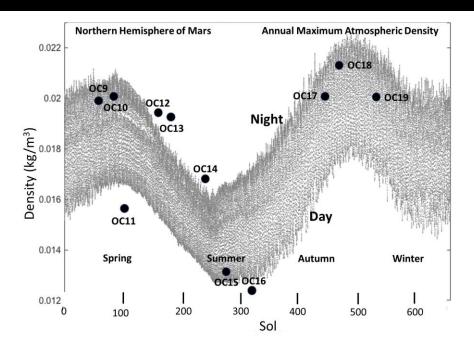

- No leak or significant performance change after 10kN crush testing
- Stacks tested to 25kN force with no crossover or external leakage
- Load to failure required 62.2kN (>30 margin of safety from design)

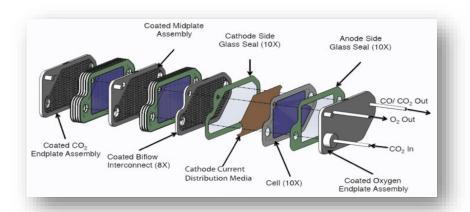
Shock/Vibe Testing

- Stacks vibrated at JPL and post vibe tested at OxEon
- No leak or significant performance change post vibe!
- No leak after shock testing, no significant performance change!

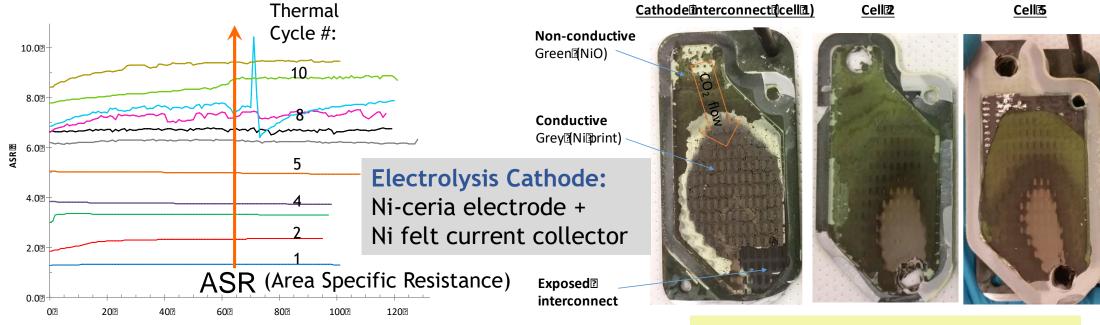
Cryo-Cycling

- Vibe stack cryo-cycled to -40°C (40 cycles), -55°C (3 cycles), -65°C
- Stack performance and purity unchanged in operational cycling post test





Flight Test Success -First Ever ISRU Demonstration

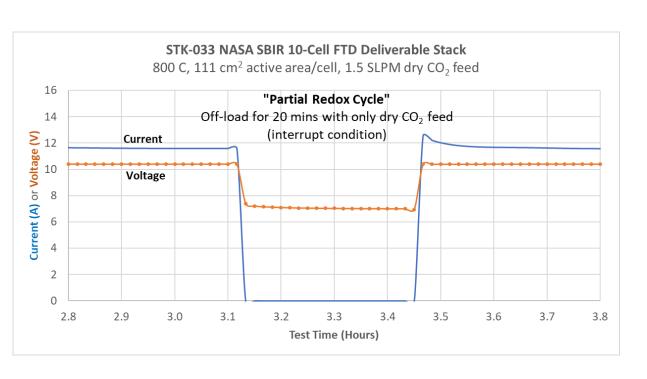

- 16 total operation cycles completed on Mars
- Pressure external to stack ~7 millibar; internal ~1
 bar
- >99.6% Oxygen purity
- Operations have spanned the climactic extremes of the Mars year.
- All cycles performed as predicted: lab & models
- The MOXIE Mission completed in Sept 2023
- Basis for a Lunar and a Martian ISRU
 Demonstration System

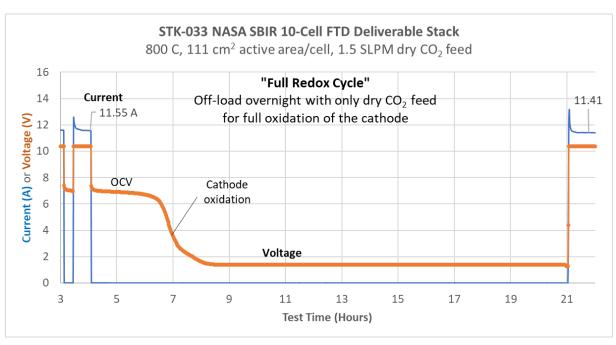
Cathode Challenge: Oxidation in Dry CO₂

- Early MOXIE Test Stack:
- 15 operational cycles full thermal cycle with 120 min operation on dry CO₂

Run@Time@min)@

• Dry $CO_2 \rightarrow O_2$ production ~12% of initial


Dramatic degradation resulted from progressive oxidation front

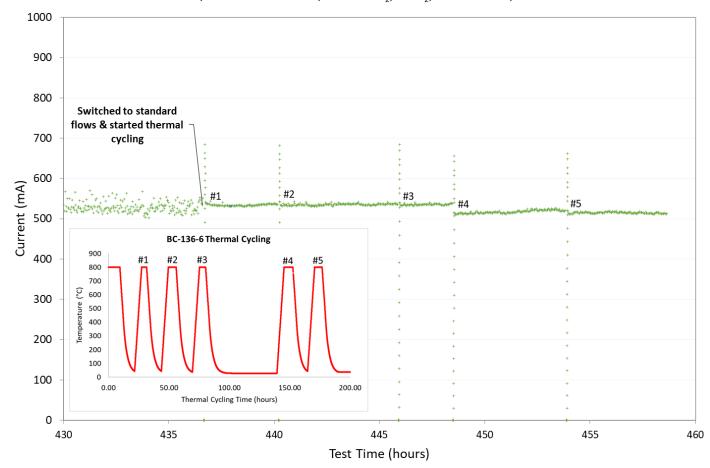

Oxidation of Ni to NiO causes ~24% vol expansion, and in this case, irreversible damage to the electrode & current collector

MOXIE implemented recycle of produced CO to prevent cathode oxidation

Redox Tolerance: Partial and Full Redox Cycles in CO₂ Electrolysis

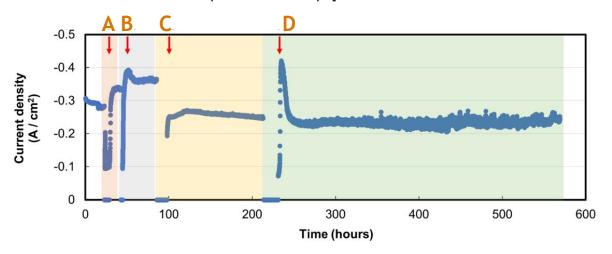
- Stack: Short (20 min) and long (12 hrs) exposure to CO₂
- Application of voltage -> Full and immediate recovery of performance

NASA SBIR Funded 10


Button Cell Thermal Cycling in Steam Electrolysis

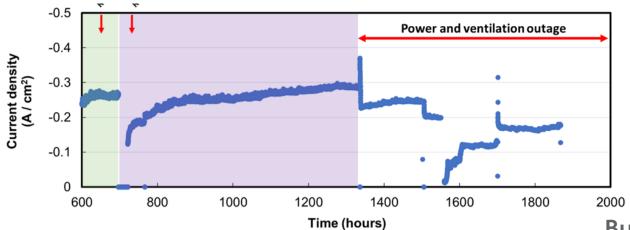
Button cell thermal cycled 5 times -> stable performance

800 °C, 2.0 cm² active area, 30 sccm H₂, 30 N₂, 82°C bubbler, 1.3 V hold


- Sr-free air electrode composition
- Thermal cycle steps:
 - Remove 1.3 V load.
 - Cool to RT, reheat to 800 °C (2°C/min ramps).
 - Reapply voltage.
- Current density
 - Before thermal cycles: 0.266 A/cm²
 - After 5 thermal cycles: 0.259 A/cm²

Button Cell Redox Cycling in Steam Electrolysis

Button cell (BC-109-4) performance recovered in redox cycling

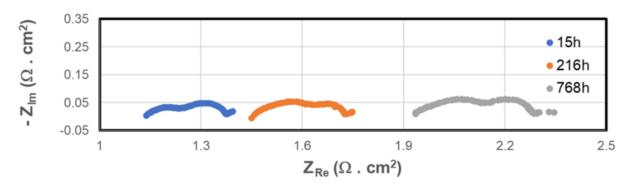

A - Initial performance, 6 30-min redox cycles - exposure to steam at OCV for 30 minutes; no H2 in feed; apply voltage

B - 2-hr redox cycle

C -12-hr redox cycles

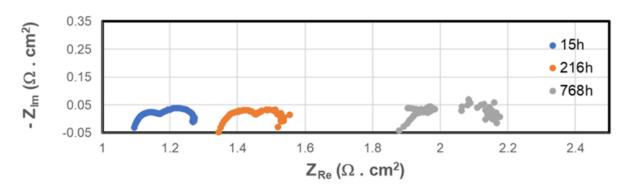
D - 16-hr redox cycle

Button cell (BC-109-4) performance continually improved over 600 hours after 16 hr oxidation cycle (~700 hrs)



Button Cell Redox Cycling in Steam Electrolysis

Ohmic resistance dominates performance loss in redox cycles. Likely results from button cell current collector delamination.

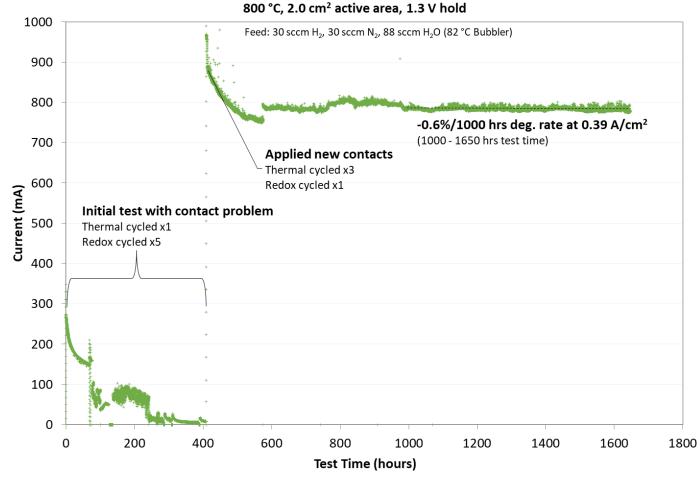

EIS at OCV

Ohmic resistance increased 28%

Polarization resistance increased 19%

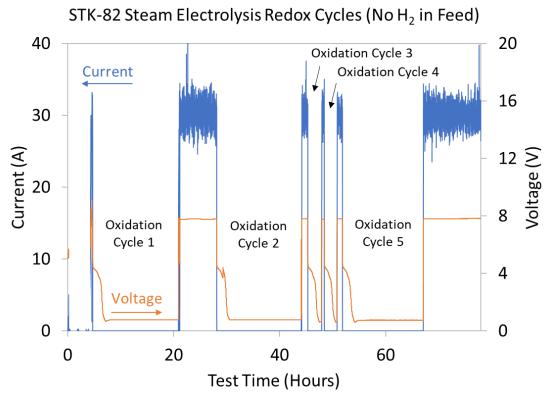
EIS at 1.3V

Ohmic resistance increased 23%


Polarization resistance increased 12%

Button Cell Thermal & Redox Cycling in Steam Electrolysis

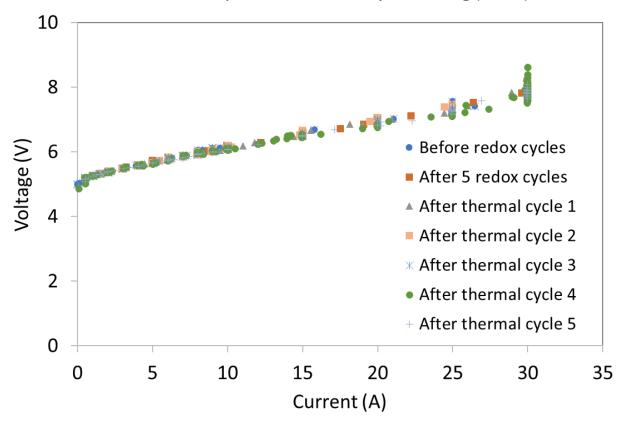
Button cell thermal cycled 4 time, redox cycled 6 times \rightarrow stable performance


BC Thermal & Redox Cycling: BC-136-2 Retest with new contacts

- Redox cycle steps:
 - Switch to oxidizing feed (N₂/ H₂O).
 - Remove 1.3 V load to stop H2 generation.
 - Wait for full oxidation, then reapply load.
 - Add H2 for reduction recovery if needed.
- Thermal cycle steps:
 - Remove 1.3 V load.
 - Cool to RT, reheat to 800 °C (2°C/min ramps).
 - > 800 °C for new contacts application
 - Reapply load.
- Current density
 - Initially: 0.174 A/cm²
 - At 1,300 hrs: 0.394 A/cm²

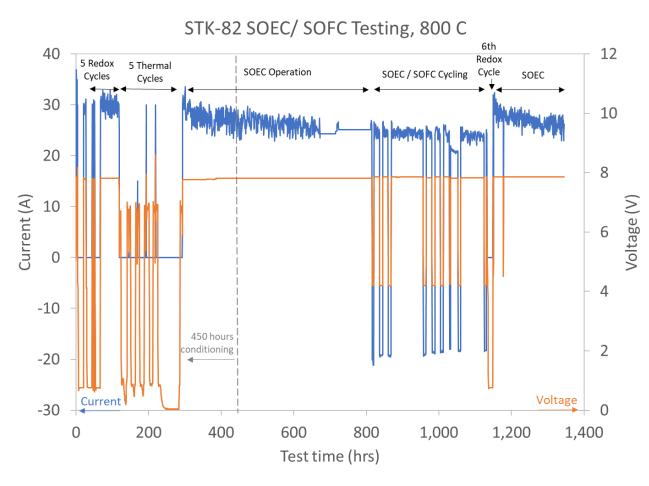
STK-82: Full Redox Cycling in Steam Electrolysis

STK-82 (6-cell stack) recovered performance after 6 redox cycles


STK-82 Redox Cycle Comparison						
Cycle	Current (A)	Voltage (V)	Power (W)			
1	28.04	7.82	219			
2	31.12	7.78	242			
3	31.33	7.77	243			
4	31.49	7.8	245			
5	31.03	7.8	242			
6	31.09	7.8	242			

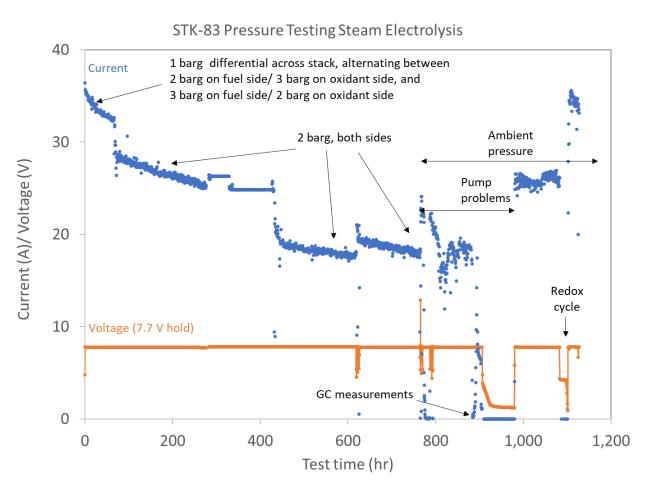
- Fuel electrode was fully oxidized by exposure to steam only
- Application of voltage → Full and immediate recovery of performance
 - Self-generated hydrogen at fuel electrode
 - No external reducing gas!

STK-82: Thermal Cycling - 800 °C to Room Temperature


STK-82 I-V Sweeps, Steam Electrolysis Testing (800C)

- Stack after 5 redox cycles was cooled to room temperature in dry H₂/N₂ at OCV, then returned to 800 °C (100 °C/min)
 - 5 thermal cycles
- Application of voltage → Full and immediate recovery of performance
- Demonstrates robust stack and seals

STK-82: Long Term Stack Stability Testing


Stack test sequence

- 5 redox cycles
- 5 thermal cycles
- 500+ hour steam electrolysis
- 300+ hours SOEC/ SOFC cycling
- 6th redox cycle
- Steam electrolysis

Degradation = 1.8 %/ 1,000 hrs in SOEC operation after conditioning period.

STK-83: Pressurized Stack Operation

- Stack (6-cell stack) tested at moderate pressure for ~800 hours
 - 3 barg pressure during testing
 - 1 barg differential across stack
- Performance drop is likely caused by poor seal between stack and stack test assembly (external gasket)
- Hydrogen production at pressure!
- Performance (at ambient pressure) recovered to initial value after a redox cycle

STK-83: Pressurized Stack Operation

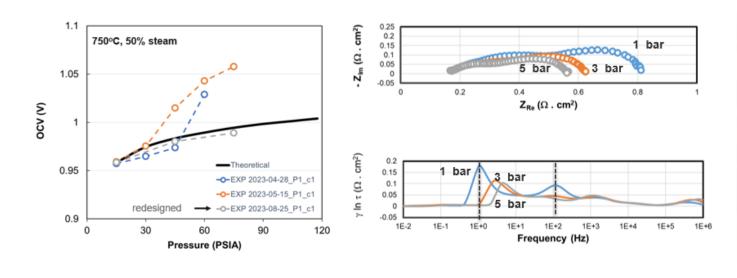
Gas chromatograph analysis of anode and cathode tail-gas composition, taken at \sim 775 hrs

GC Results (%) & Product Calculations (slpm)

Pressure condition		rg O ₂ , g fuel		arg O ₂ , g fuel		g O ₂ , rg fuel		g O ₂ , g fuel
GC Type	O_2	fuel	O_2	fuel	O_2	fuel	O_2	fuel
H ₂		85.8		84.8		84.08	0.01	85.41
O_2	99.84		98.58		99.46		99.58	
N_2	0.16	14.03	1.39	15.03	0.54	15.77	0.41	14.36
H ₂ generated (slpm)		0.95		0.86		0.80		0.92
O ₂ generated (slpm)		0.47		0.43		0.40		0.46
H ₂ O Conversion (slpm)		84%		76%		71%		81%
Stack Current, A (calculated)		22.6		20.5		19.2		21.9

Robust seal: O₂ purity demonstrates lack of cross over leak

H₂ and O₂ generated at pressure!



Button Cell Operation at Elevated Pressure

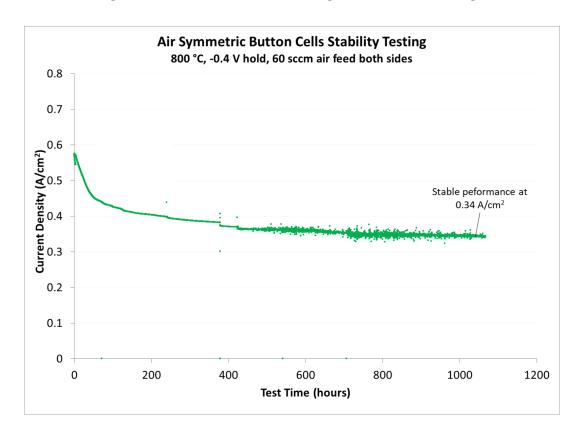
SOEC Performance Increases with Pressure

(PNNL-fabricated cells).

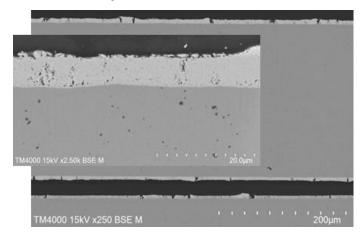
Pressurized button cell

- Low frequency (mass transport) and mid-frequency (diffusion) processes are suppressed
- Troubleshooting seals for long-term tests

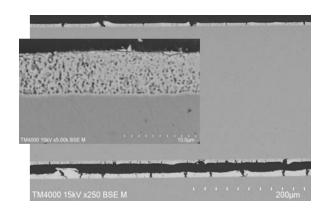
Test stand modifications on-going to meet 7 bar pressure target


- Good OCV match to the Nernst voltage, but there is a seal leak somewhere in the test system
- Reached 5 bar.

Oxygen Electrode Interface Improvement



Improvements to barrier layer density and continuity.


Stable performance at 0.34 A/cm2 measured after 600 hours conditioning that continued through 1,000 testing

Barrier layer density increased using a modified process

Higher porosity with screen printed barrier layer

Oxygen Electrode / Current Collector

Eliminate Sr in current collector layer by replacing LSCF with Sr-free composition

- Ohmic resistance close to expected based on electrolyte thickness
- Polarization resistance indicates Sr-containing LSCF layer is not required for water splitting
 - Sr-free cell measured 58% lower initial polarization resistance relative to the LSCF cell

Electrode CC	ASR (Ω·cm²)					
Layer	Total	Ohmic	Polarization			
Sr-free						
composition	0.66	0.59	0.08			
LSCF	0.71	0.52	0.19			

Summary

- Redox tolerance validated for steam electrolysis
 - Stack test complete
 - Oxidized Ni electrode recovery without the need for hydrogen in inlet
- Thermal cycle stability demonstrated (up to 5 cycles)
- Pressurized tests: steam electrolysis
 - Stack showed high purity O₂ and H₂ at 3 barg pressure
 - Button cell test ongoing at PNNL
- Electrode materials modification validation in progress
 - Composition to improve thermochemical stability
 - Surface/Interface modification for improving catalytic property and performance stability
- Cation migration is still a challenge for long-term stability
- External influences (steam, air, BOP contaminants) still need evaluation and mitigation

Thank you

S Elangovan elango@OxEonEnergy.com

This presentation contains information from work supported by NASA through JPL's prime contract under JPL subcontract number 1515459 and NASA SBIR contract 80NSSC19C0114.

DOE-NETL support through Contract Number: DE-FE0032105 is acknowledge

OxEon Energy, LLC 257 Riverbend Way North Salt Lake, UT 84054

info@oxeonenergy.com +1-801-677-300 oxeonenergy.com

