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Subsurface Hydrogen Storage H, or HyBlend Transportation via NG

Infrastructure

Legend

—— interstate pipelines
— intrastate pipelines

Source: U.S. Energy Information Administration, About U.S. Natural Gas Pipelines

(Source: https://edx.netl.doe.gov/shasta)

= Subsurface H, storage costs three to five times less than above-ground tank storage.

= Leveraging the existing natural gas (NG) pipeline infrastructure provides a viable and cost effective option for
large-scale H, transportation
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« Early detection of hydrogen leaks to ensure safety and reliability.
* \Wellbore and pipeline integrity monitoring to prevent catastrophic failures.




In-situ optical fiber sensors for real-
time monitoring of hydrogen,
methane, and chemical parameters

at subsurface hydrogen storage
conditions

Determine microbiological H,
consumption/depletion and pH
change

Identify well integrity risks
vs Periodic Sampling

vs Ex situ
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Microbial conversion of hydrogen in subsurface storage wells
Need for real-time monitoring of gas composition and geochemical
conditions.
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Sensing Principle : Evanescent Wave Sensors

Sensing Layer

I
[lghtsource | —> slica Core — [ Detector | o
T e —— Advantages of Optical Fiber Sensors (OFS)
Cladding

- _ * Improved safety in the presence of flammable gases
Distributed Sensing compared to electrical based sensors

 Stable in subsurface harsh environments
« Small size and flexibility
Infected Laser Light * Long reach, light weight

» Can be functionalized for targeted parameters through
functional materials
« Compatible with distributed or multi-parameter

Rayleigh backscatter forms a permanent spatial interrogation.
“fingerprint” along the length of the fiber.

* Need functional sensitive materials that enable H,, CH,, and geochemical sensing (e.g. pH and corrosion),
which are compatible with high pressure high temperature and humid conditions in subsurface.

* Spatially distributed sensing can identify and locate the hydrogen leaks along a long-distance pipe.
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o m— In-House NETL Distributed Optical Fiber Sensor Interrogators
Electfromagnetic ‘ “ . .
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e Technolo Fiber Type Sensing Performance

‘;ﬁ _~ (Un-)Conventional OQil&Gas
Extreme temperatures B - —-;'_N.'—Z;’ ——
: - = Coherent Rayleigh Temperature, strain, vibration,
5 -km mm-cm seconds

OFDR chemical sensing

& temperature cycles =
Coherent Rayleigh km m seconds SMF Acoustic wave, vibration
OTDR
Brillouin > 100 . _
OTDR/BOTDA km cm-m minutes SMF Temperature, strain,

OFDR

Power Generation

Structure deformation 1

Turbine

Vibration SgSia Z)

Battery Module

S st Multiple Distributed Optical Fiber Sensing Platforms
W tem o am o te om Have Been Developed to Enable Structural Health
Ref: Lu et al, Appl. Phys. Rev. 6, 041302 (2019) Monitoring of Natural Gas Pipeline, particularly for

Corrosion Onset and Gas Leak Detection.
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High-Pressure High-Temperature (HPHT), Humidity, Mixed Gas, and Dissolved Solids
« Stable at ~80°C and ~1000 psi (up to 4000 psi)
« Hydrogen concentration: 5% to 100%
« Capable of surviving mechanical insertion into high pressure wellbore
« Microbially active environments
« pHranging from ~4 -10
« High humidity environments

« Sensors must be compatible with mixed CH,/CO,/H,/H,O conditions.

Application Depth Teﬁl‘;)egfagtflr o [TPressure pH Range Dissgf)ilcizsed Common Ions

Sulfides,
H, and H,/CH, 200-2000 100 © ) ) 10,000-70,000  CO,/Carbonate, CI,
Blend Storage m 25-100 °C 5-30 MPa 49.5 mg/L Na*, K*, H;O*, Ca?,
Mg?*, Ba?*, Sr?*, Fell/ll

(Goodman Hanson et al., 2022; Bérest, 2019;Tarkowski, 2019; Zivar et al., 2021; Muhammed et al., 2022; Pannekens et al., 2019)

Lack of existing hydrogen sensors compatible with HPHT.
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Measurements Light transmission based
Concentration 100 ppm to 100% H,
Temperature 20to 80 °C
Filter Layer (polymer)
Pressure 14.7 to 1000 psia .| Pd/SiO, Layer
Humidity 0 to 100% RH Coreless Fiber
Comparability Co,, CH,, H,0
Current TRL 4to5

: core

ee -
(-] 3

v v e Lt SOURCE

l Multimode Fiber Coreless Fiber Multimode Fiber

1
Light Source (1m) (10 cm) (1 m) Spectrometer

Element _ Weight% _ Atomic%
o 27.38 62.03
13.29
Cu 2.71

* Pd nanoparticle (NP) incorporated SiO, coated optical .
fiber sensor was developed for H, sensing. :_ - X -. S  Filter layer on
* A new filter layer was overcoated on the sensing layer to P LN optical fiber
increase selectivity and mitigate humidity interference.




Transmission (%)

Optical fiber H, sensor under humid conditions
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« The new filter layer has significantly mitigated humidity effect on hydrogen sensing.

H, sensing calibration plots under humidity conditions were obtained for a wide range of 0.5% to 100%.
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Optical fiber H, sensor has no cross-sensitivity to CO, and CH, N =|NATIONAL

Transmission (%)
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Time (min)

In order to guarantee a minimum reservoir pressure, the reservoir is filled with a cushion gas

such as CO,, N, or possibly NG.

Under 99% relative humidity, the optical fiber H, sensor with the filter layer has shown

negligible effects from CO, or CH,.

11




Sensor Tests in Simulated HPHT wellbore conditions
with Microbial Samples

Subsurface Sensor Development Reactor (SSDR)

SSDR capability:

Automation with LabView: Batch and Flow-
through Modes;

High-Temperature High-Pressure
(HTHP): up to 450 °C, 4500 psi;

Multi-phase: aqueous, gas, supercritical;
Gas: H,, CO,, CH,, N,, Air, H,S.
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T: 80 °C P: ~850-1000 psi.

Control CH, or 80/20 CH,/H,

Abiotic:CH4 Filtered PDR CH, 1,3,7
Biotic: CH4 Unfiltered PDR CH, 1,3,7
Abiotic:H2+ CH4 Filtered PDR 80/20 CH,/H, 1,3,7
Biotic: H2+ CH4 Unfiltered PDR 80/20 CH,/H, 1,3,7

PDR = Playa Del Rey wellbore fluid provided by SoCalGas 12




Hydrogen Sensing Results in HPHT Microbial Tests

Transmission (%)

100%

90% A
80% -
70% A
60% A
50% -
40% A
30%
20% A

10% A

0%

y=-3.5517x + 1
R>=0.8743

0%

5%

Hydrogen Concentration (%)

10%

15%

Transmission (%0)

140

120 A

100

80 A

60

40

20 1

N NATIONAL

TL TECHNOLOGY
LABORATORY

e
7 Day CH4 Biotic
——1 Day CH4 Biotic
0 12 24 36 48 60 72 84 9 108 120 132 144 136

Time (hr)

» Calibration plot of hydrogen sensor at 80 °C, 1000 psi. More data are needed for wider range calibration.

» Decrease of light transmission indicates increase in hydrogen concentration.

» No hydrogen concentration changes were detected in 100% CH4 biotic conditions.

13




Real-time Hydrogen Concentration Monitoring [N=|vanona
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» In biotic conditions, optical fiber hydrogen sensor detected
decrease in hydrogen concentration by 2% in 11 hours in
H2+CH4 blend.

» The sensor didn’t detect hydrogen concentration change in
abiotic or pure CH, conditions.

TL TECHNOLOGY
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Real-time Hydrogen Concentration Monitoring ENAT'ONAL

Biotic, H2+CH4
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» The optical fiber H, sensor has demonstrated real-time H, sensing in simulated subsurface H, storage
condition with microbes.
» According to the optical fiber hydrogen sensor, the hydrogen concentration seems to reach a steady state

after 48 hours (decrease by 5-7%). The results here can benefit from duplicates to confirm repeatability. e
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» Optical time domain reflectometry (OTDR) system has Distributed hydrogen sensor design example
been developed for ultra-long distance (>50 km) | m 5 em 'S em -
hydrogen sensing. o S R S L ‘
» Currently working towards improving the sensitivity, ‘ Im | E— _
lower concentration detection, and repeatability. SMF Crisoime T Dnsones Ny o
. o . ] . _- Gas chamber
Schematic of distributed interrogation system <107 _ Y
6 —— Ref: N2 .
Coupler Circulator , o [T 100% H, |
| T'J'SE i el Backscattered light 5 100% "'2\
= " Fiber optic cable coated with H2 _ ¢
Coupler . ~sensitive material % :
- = 2
Photo- é 1 0% H2 L
OTDR  detector s OTDR-experimental setup T o 0.1 _—
Interrogator  (Data acquision) . P ol pa—
-2
-3 L L | L
0 0.5 1 1.5 2

Fiber distance (m)

Measured Rayleigh backscattered signal for N,
and 100% H,
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Functional Sensing Layer Integrated .
Fiber Optic Evanescent Wave Absorption
& Based Sensors 101
Light source Fibersensor Dotctor ]%a_se_li_nf Etgb_iliz_eci lzy_ s_oibellt _in_clusion I
I; ()= 1, exp[— ya(2)CL] 100 b
99 4
s
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Framework (MOF) Permeable Polymers 2 g e T T e
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S

Gas adsorption in the sensor 3 a

f:oatln_g causes R coating) > Rl fiven) =, p_."

Inducing optical power changes. .-~ Linear

1 i - -
Ref: Kim et al, ACS Sensors, 2018, 3, 386-394. Ly Calibration
0 |oP

2 100

QCI-I‘ C;bncenlrg%ion [%ff
Light Intensity Based Methane Sensing Technology. Integration of Fiber

Optic Sensors with Engineered Porous Sensing Layers by Design. .




Transmission (%)

Simple coating method

g,/

suspension

Matrimide / silicalite / NIR absorber

Optical fiber CH, sensor under humid conditions N=|nAronAL
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99% Relative Humidity Calibration curves
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Successful demonstration of optical fiber methane sensor in humid
conditions at 99% relative humidity (RH)
Tuned the wavelength to NIR range to be readily compatible with commonly
used distributed OFS interrogators.
Fast response time.
Calibration curve of CO, and CH, from 5% to 100%.
18




Optical Fiber pH Sensor

pH Sensing Measurements:

Transmission Based Sensor

Optical Backscatter
Reflectometry (OBR) Sensor

50 cm

50 cm

Polymer Jacket

cm
Polymer Jacket Calcined Polymer Coating
|:> Multi-Mode Fiber (MMF) Coreless Fiber Multi-Mode Fiber (MMF) |:>
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|—> ingle-Mode Fiber (SMF
- =SS

10 em

Transmission pH Sensing Results at 20 °C and 80 °C
o ; i . . . .
20 °C, dynamic pH sensing 20 °C pH calibration 80 °C pH calibration
180 130 .
PHEIOS, 170 4 y=44383x +11591 .
3 R2=06943 .- L ~9.2521x +
=] = 1ol pH 113 e v §-00 I ’ 011325:210'722657'25?
2 20F e L
. ) = N |
o I
E o LU . . guwop e
; 3 10 § pHA é
5 501
110 T ;:
00 e e 0 ' ‘
120 —t 0 2 4 6 8 10 12 : } N 6 ; § oo e
0 2 Time (minutes) » pH ’

A new pH sensitive layer has showed reversible acid and base responses.
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Distributed pH sensor results from OBR

pH sensing vs location
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» Accomplishments

 Pd nanoparticle (NP) incorporated SiO, coated optical fiber H, sensor was demonstrated for a wide range
of hydrogen sensing from 0.5% to 100 %. A new filter layer was developed to increase selectivity and
mitigate humidity interference. Negligible cross-sensitivity from common cushion gas CO, or CH,

* The optical fiber H, sensor has demonstrated real-time H, sensing in simulated subsurface conditions with
microbes (80 °C, 1000 psi), and detected hydrogen concentration change in situ and in real time.

 Distributed hydrogen sensing can be achieved using optical time domain reflectometry (OTDR).
 Successful demonstration of optical fiber methane sensor in humid conditions at 99% relative humidity.

« Successfully demonstrated a new pH sensing material with reversible acid and alkaline pH sensing, and
distributed pH sensing at 80 °C

» Future Plans for Sensor Development and Testing

EY 21 EY 22 EY 23 EY 24 EY 25+
SHASTA:

Room temperature and . .
) Pack
Subsurface B N ensor Packaging and Field Demo
Storage

NGDHT: H, Transportation Monitoring

Humid, mixed gas High pressure, high
conditions temperature conditions

Hydrogen Sensing
Materials Development

Low-level H, detection

Distributed Hydrogen Prototype and Pilot-scale
Sensing pipeline demonstration

21
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D. Kim, K.K. Bullard, A. Shumski, R. Wright, Optical Fiber Sensor with a Hydrophobic Filter Layer for Monitoring Hydrogen under Humid Conditions, ACS Sensors, manuscript draft
completed, to be submitted in 2024.

A presentation and a conference paper: “Calcined Polyethyleneimine Coated Optical Fibers for Distributed pH Monitoring at High Pressures and Temperatures” authored by Shumski, A.,
Diemler, N., Wright, R. will be presented at SPIE Defense + Commercial Sensing 2024 conference (April 21-25) SPIE Defense + Commercial Sensing, 13044-20, 2024.

A presentation and a conference paper: “Pd Nanoparticles-Enabled Optical Fiber Hydrogen Sensor with a Hydrophobic Filter Layer for Humid Conditions” authored by Kim, D., Bullard,
K., Diemler, N., Wright, R. was presented at SPIE Defense + Commercial Sensing 2023 conference (April 30-May 4) and accepted to Proc. SPIE 12532, SPIE Defense + Commercial
Sensing, 12532-3, 2023.

A presentation and a conference paper: “TiO,-Coated Optical Fibers for Distributed pH Monitoring at High Pressures and Temperatures” authored by Shumski, A., Diemler, N.,
Wuenschell, J., Ohodnicki, P., Wright, R. was presented at SPIE Defense + Commercial Sensing 2023 conference (April 30-May 4) and accepted to Proc. SPIE 12532, SPIE Defense +
Commercial Sensing, 12532-22, 2023.

A presentation and a conference paper: “Physisorbent-Coated Fiber Optic Sensors for Near Ambient Leak Detection of CH, and CO,” authored by Culp, J., Bullard, K., Kim, K., Wright,
R. was presented at SPIE Defense + Commercial Sensing 2023 conference (April 30-May 4) and accepted to Proc. SPIE 12532, SPIE Defense + Commercial Sensing, 12532-8, 2023.

Invited presentation “Gas Sensors for Energy Infrastructure Monitoring”, Presenter: Ruishu Wright, Pittcon 2023, Philadelphia, PA, March 2023.

A poster was given at 2022 AIChE Annual Meeting (November 13-18, 2022), titled “Pd-nanoparticle enabled optical fiber hydrogen sensor for subsurface storage conditions” authored
by D. Kim, N. Diemler, R. Wright, M.P. Buric, P.R. Ohodnicki.

A presentation and a conference paper: “TiO, Coated Optical Fibers for Distributed Real-Time pH Monitoring in Wellbore Conditions” authored by Shumski, A., Diemler, N., Wright, R.,
Lu, F., Ohodnicki, P. and Su, Y. was presented at SPIE Defense + Commercial Sensing 2022 conference (April 3-7) and accepted to Proc. SPIE 12105, SPIE Defense + Commercial
Sensing (S122), 12105-21, 2022.

A presentation and a conference paper: “Metallic Film-Coated Optical Fiber Sensor for Corrosion Monitoring at High Pressures,” authored by Wright, R.F., Diemler, N., Baltrus, J.,
Ohodnicki, P.R., Jr., Ziomek-Moroz, M., and Buric, M., was presented at 2022 AMPP Annual Conference + Expo, March 6-10.

Patents

U.S. Patent issued. ‘Low-cost Fiber Optic Sensor Array for Simultaneous Detection of Multiple Parameters,” inventors: C. Sun, P. Lu, R. F. Wright, P.R. Ohodnicki, Jr., Patent
Number: US11268984B2, issued on 2022-03-08.

“Metal Oxides Enabled Fiber Optic pH Sensor for High temperature High pH Subsurface Environments” invented by F. Lu, R. Wright, P. Lu, P. R. Ohodnicki, U.S. Nonprovisional
patent application filed, 2022-04-26. Application Number: 17729511.

Hydrogen Monitoring under High Humidity Conditions Using the Optical Fiber Hydrogen Sensors Coated with a Hydrophobic Filter Layer, D. Kim, A. Shumski, R. Wright, ROI draft 22
completed.
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