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Background — Hydrogen 8
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> Production E—
¢ 120 million tons H, worldwide each year
* 540 GW equivalent

> Sources
* 75% from natural gas reforming
* 25% from coal reforming

Source: ACES Delta

> Usage
* 63% used for refining and ammonia production 9 )
* 37% for MeOH, iron ore processing, etc.

"ACES Delta will feature 220MW

> Pote ntia | of electrolysers that will convert
. . renewable energy, mainly solar
* Non-carbon energy production (energy carrier) e T e L
* La rge-scale energy storage tonnes of green hydrogen a day.
N Hyd rogen fuel cell EVs This will be stored in two huge

. salt caverns with a combined
* Industrial use storage capacity of 300GWh."




Background — Biomass Gasification
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> Conversion of solid or liquid feedstock to
synthesis gas (syngas)
* Hydrogen (H,)
e Carbon monoxide (CO)
* Carbon dioxide (CO,)
* Methane (CH,)
e Other hydrocarbons

> Gasification is common for coal, petroleum

> Main reactions:

C+H,0 = H,+CO (requires heat)
C+CO, — 2CO (requires heat)
C+0, — CO, (produces heat)
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Background — Gasification Technologies 8
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Syngas Syngas Fuel
— Air / Oz —]
(Steam) p=
Syngas
—_
T
Air / O,/ Steam Air / O,/ Steam W Siag / Ash
Fixed Bed Fluidized Bed Entrained Flow

Property Fixed Bed Fluidized Bed Entrained-Flow
Required feedstock properties Solid 0.5-2 inch Solid or liquid Liquid (slurry) or powder (dry)
Pressurizing/process integration Difficult Difficult "Easy"
Conversion to syngas 80-95% 80-95% >98%
Syngas quality Very messy Quite messy Comparatively clean




Biomass Feedstocks

> Forest waste
* Variety of trees, shrubs
* Stumps, branches, twigs, needles/leaves
* High-ash bark
* Dirt, rocks, etc.

> Agricultural residues
* Variety of plants
» Stalks, leaves, roots, cobs
* Soil, other contaminants

> Other biomass-based opportunity fuels

* Manure
* Poultry litter
* Biosolids from wastewater treatment
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Municipal Solid Waste (RDF, SRF) .
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> Attractive due to potential for
negative fuel cost

> Challenging due to

* Heterogeneity of feedstock

— requires sorting but will still contain small
guantities of metal, glass, ceramic

— day-to-day (hour-to-hour) variation
* Physical properties (plastics, fluff, string)
complicates feeding
* Chemical impurities (chlorine, volatile
metals)




Background — FOA Interest Area 8
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> DE-FOA-0002400 mod 006 AOI 1:
Clean Hydrogen Cost Reductions via
Process Intensification & Modularization R

FUNDING OPPORTUNITY ANNOUNCEMENT

* "Seeks innovations that leverage process

Department of Energy (DOE)

i nte n Sifl Catlo n " Office of Fossil Energy and Carbon Management (FECM)
* "Combining multiple unit operations into a single CLEAN HYDROGEN PRODUCTION,
o o STORAGE, TRANSPORT AND UTILIZATION
subsystem that can accomplish multiple tasks T0 ENABLE A NET ZERO CARBON ECONOMY

simultaneously"

Funding Opportunity Announcement (FOA) Number: DE-FOA-0002400

o e FOA Type: MODIFICATION 0000006
> Speclflc eXampIeS Assistance Listing Number: 81.089 Fossil Energy Research and Development
1. "Selective hydrogen extraction...that might have
combinatorial benefits on reducing equipment size, T — o
advantageously shifting reaction equilibrium..." I ——————

Expected Date for Selection Notifications: July 2022
Expected Date for Award: | September 2022

2. "CO, removal technologies integrated and combined
with gasification system unit operations..."

3. "Combining of multiple unit operations into a single
unit operation..."




Bioenergy as an Enabler for Carbon Neutral U
and Carbon Negative Energy Production DN
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Carbon Carbon

Conventional fossil Fossil fuel Biomass Biomass combustion +
fuel combustion combustion (and waste) CCS = negative CO,
with CCS combustion 8



Technical Approach — Process Intensification hd
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> Conventional conversion of biomass to H, is a multi-step process
* Typically fluidized bed or fixed bed gasifiers
Needs feedstock preparation

...then gasification to make H, and CO
...then syngas cleaning to remove tars and other contaminants
...then water-gas shift to maximize hydrogen (H,0 + CO — H, + CO,)

...then H,/CO, separation by e.g. pressure swing absorption (PSA)
Overall, a complex, expensive process

Steam/Air/Oxygen Steam — — H,
. Feedstock Biomass Syngas > Water-Gas .
_’ [
Biomass Pretreatment » Gasification Cleaning > Shift Separation
L—» Ash s co,

Conventional approach for hydrogen production from biomass

> Need process intensification to reduce complexity and number of units
> Solution: Sorption-Enhanced Gasification




Dual Fluidized Bed (DFB) Gasification K
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Hot sand
Flue gasﬁ @ f(::> Syngas
Combustor Gasifier

<& Biomass

I R\ (S

Cooled sand + char

Combustor: Gasifier:
C+0, = CO, C+H,0 & CO+H,

* Sand (e.g. olivine) is heat carrier for gasifier
* 80-85% conversion of biomass in gasifier

* Unconverted char carried to combustor to heat sand 0



Sorption-Enhanced DFB Gasification U
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» Add limestone to the dual fluidized bed gasification system to absorb CO,

Hot sand + CaO

FIuegasﬁ @ ((:(>Hydrogen

Combustor

Gasifier

<= Biomass

wed RS & seeam

Cooled sand + char + CaCO,

C+0, — CO,

CaCO; — CaO + CO,

C+H,0 @& CO+H,
CO+H,0 — CO,+H,
Ca0O + CO, — CaCO, 11



Oxy-Sorption-Enhanced DFB Gasification .
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» Operate combustor as an oxy-fuel system with pure O, and recycled CO,

Hot sand + CaO

.4 7 m @ ((:(> Hydrogen

Recycled

co, Combustor

Gasifier

<= Biomass

O, 1 A4 ﬁ @ %Steam

Cooled sand + char + CaCO,

c+0, = CO,
CaCO; — CaO + CO,

C+H,0 @& CO+H,
CO+H,0 — CO,+H,
Ca0O + CO, — CaCO, 12
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> Overall objective: Demonstrate the feasibility of sorption-enhanced biomass
gasification for production of H,-rich syngas in a dual fluidized bed reactor
operating under industrially-relevant conditions. This will be achieved by pre-
processing the biomass feedstock to ensure consistent composition and trouble-
free feeding, combined with operation of an existing dual fluidized bed process
development unit with addition of limestone to achieve in situ removal of CO,
from the gasifier to create a clean, high-hydrogen syngas.

> Specific objectives:

1.

2.
3.

Demonstrate that waste biomass can be pre-processed to promote SEG

Understand and model fundamental processes of SEG

Evaluate SEG performance and syngas quality over a range of industrially-
relevant conditions

. Demonstrate oxy-SEG to produce separate of H,- and CO,-rich streams

13



Project Structure — Tasks 8
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Project management and planning

Biomass feedstock preparation

2.1 Procure and characterize biomass materials
2.2 Prepare and pelletize biomass
2.3 Prepare pellets of combined biomass and limestone

Fundamental studies of sorption-enhanced gasification
3.1 Characterize gasification rates of prepared fuels
3.2 Lab-scale sorption-enhanced gasification studies
3.3 Evaluate methods to maximize hydrogen production

PDU studies of sorption-enhanced gasification
4.1 Preparation of dual fluidized bed PDU for sorption-enhanced gasification
4.2 Initial PDU testing and scoping trials
4.3 Parametric testing of sorption-enhanced gasification
4.4 Testing oxy-SEG for hydrogen production with CO, capture

Modeling of sorption-enhanced gasification
5.1 Dual fluidized bed gasification reactor modeling
5.2 Process modeling of sorption-enhanced gasification

5.3 Economic modeling as a tool to reduce hydrogen cost »



Dual Fluid

ized Bed Process Development Unit U;;‘sgw
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COMBUSTOR

® e|e 2|

Air

Biomass feed

Steam

15



Biomass Conversion Studies U
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Microbalance:
—-—

> Chemical considerations
* Distribution into volatiles, char
* Volatiles composition
* Ash chemistry

> Physical considerations
* Feedstock preparation
* Char properties (er e
* Fluidizing characteristics

n!ﬁﬁed’j

UResttor)

» @Gasification rates

* Influence of temperature e y = mas
* Influence of pressure L 750C o h
* Influence of CO and H, ot N
* Development of kinetic models Jpoes i
0.;35 0.:90 O.:95 I.:)O \ ].:)5
0 200 400 600 800 1000 . 1000/T, K™!

Time, sec Activation energy 193 kJ/mol

16

Influence of temperature on char gasification of loblolly pine



Effectiveness of CO, Sorbents
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Ca0 + CO, <« CaCO,

Sorption capacity

Rates of reaction

Suitable temperature regime
Influence of H,0, CO, H,

Different types of limestone and
dolomite materials

Influence of particle size

Time /minutes

Calcination : 950°C (10°C/min) Carbonation : 650°C
with 1.5 SLPM N, 1.5 L/min N, + 0.4 SLPM CO,
e | imestone M’
@ Empty tz~32 min
CO, absorbed
CO, released
54L-106g
57L-11.2g %
Ll L} Ll L}
0 25 50 75 100

17



Temperature Effects on Carbonation .
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* Increase in CO, sorption with - 08
increasing T. ’; Carbonation @550-750°C
- L e (20% CO, balance N,)
. . =] = ,
* Furtherincrease of carbonation % 8
. c o .
T would bring about g % o o Deovrc
. . . . H ) 2% @ D650°C
thermodynamic limitations. 08 E 0af o 7 D700°C |
9 . O .0/0
] ] 550 600 650 700 750 03} 3
e Ata given T, |f PCOZ > Peq Carbonation temperature, T (°C) :'z 5 5
. -2 7%
carbonation takes place. 02| e iy
L R 12.9%
500 600 700 800 900 1000 01t 16.1% i "g' - :' - : i
08 ' 'carbonatit')n I ’ 10.5%
- oge . Ca0+C0,—~CaCO, L1
Due to the chemical equilibrium of 04y ’ 00—
the capture reaction, gasification _03f™® Snaten (01 No. of carbonation cycles (N)
temperature is limited to T < 720°C | * ] 001 §
0.1 +0.001
~778°C
~730°C
0.0 T — T 1E-4
Baker, J. Chem. Soc. 1962 500 600 700 800 200 1000

T(°C) 18



Effect of Steam Addition during Carbonation K
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* Increase in CO, sorption with
steam across carbonation T°C.

* Increased pore volume and
formation of cracks (large
increase of the reaction surface)
enhance the solid-state diffusion
through the carbonate layer.

* CaO hydration to obtain Ca(OH),
can be used to increase
carbonation extent.

Sorption capacity is enhanced with
steam, holds true over multi-cycle

CO, sorption performance, X, [-]

CO, sorption performance, X, [-]

Il Dry
744 Steam

N\

MMM

0.6 B Dry

0.4+

0.2

/4 Steam
B Hydration .

Steam | Hydration

Carbonation @600-700°C
(20% CO,+50% steam, balance N,)

0.6
B 5600°C
18.8% B S650°C
0.5 , 88% $700°C |
43.2%
o
0.4} !
.
—o03f % &
e 22.5%
.. " 14.7%
0.2+ R ke
iaw 13.7%
R R
01l 17.3%
0.0

1 2 3 4 5 6 7 8 9 10
No. of carbonation cycles (N)
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Effect of CO Addition during Carbonation

* Decrease in CO, sorption is observed when CO is

introduced, even with as little as 2 vol.% CO

* Competitive adsorption of CO and CO, for CaO*

* Boudouard reaction: 2CO <> CO, +C

CO, sorption performance, X, [-]

0.6

0.4

0.2 -

Carbonation @650°C

(20% CO, +10% CO, balance N,)

0.6

0.5

04+

Xy [

0.2+

0.1+

0.0
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03+

@ Dry
48.8% Q@ Steam |
° @ co
940:2%
i)
@ 32.9%
R TN
0,
o g \‘\2_2.5/.,
9 -0 ¢6 i
Q g 9 . 14.7%
a8 2 e
18.7% -3 3

12.9% |

12.9%

1 2 3 4 5 6 7 8 9
No. of carbonation cycles (N)

10

Il Dry
Il Steam
. co t21%
118%
L
| Steam cO
650°C

CO, sorption performance is limited by CO
addition; C — deposition, sorbent deactivation
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SEM Characterization of Spent Sorbents U
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Formation of cracks and
increased pore volumes, creating
easier diffusion channel for CO,
towards unreacted CaO core

Visible carbon deposits on CaO,
blocking CaO* and pores,
otherwise available for CO,

21
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