

Industrial Decarbonization Pathways to Net-Zero

Joe Cresko, Chief Engineer Industrial Efficiency and Decarbonization Office

Hydrogen Program Annual Merit Review May 8, 2024 | Crystal City, VA

Industrial Efficiency & Decarbonization Office (IEDO): https://www.energy.gov/eere/iedo/industrial-efficiency-decarbonization-office

U.S. Industrial CO₂ Emissions

Decarbonizing Industry is an Opportunity for America's Economy

U.S. manufacturing subsector...

CONTRIBUTES \$2.79 trillion to the U.S. Economy

GENERATES 12% of U.S. GDP

SUPPORTS 11.2 million jobs

> U.S. Census Bureau <u>Annual Survey of Manufactures</u> & <u>U.S. Bureau of</u> <u>Economic Analysis</u> data for 2021

Decarbonizing Industry is an Opportunity for America's Economy

U.S. Census Bureau <u>Annual Survey of Manufactures</u> & <u>U.S. Bureau of</u> <u>Economic Analysis</u> data for 2021

DOE Industrial Decarbonization Roadmap

- Pillars, and associated pathways to netzero GHG emissions by 2050 for highemitting industrial subsectors
- Rethink the opportunity for RDD&D and robust technology solutions
- Innovations for more sustainable manufacturing

DOE Industrial Decarbonization Roadmap, Sept. 2022. https://www.energy.gov/eere/doe-industrial-decarbonization-roadmap

Industrial Decarbonization Pillars

- Invest in all pillars
- Leverage cross-sector approaches
- Interdependencies require systems solutions
- Strategies are needed to minimize implementation hurdles, address scale-up, and accelerate adoption

Source: DOE Industrial Decarbonization Roadmap, Sept. 2022. https://www.energy.gov/eere/doe-industrial-decarbonization-roadmap

Industrial Decarbonization Recommendations

Remaining GHG Emissions Emission Reduction by CCUS

Emissions Reduction by Industrial Electrification & LCFFES
 Emissions Reduction by Alternate Approaches (e.g., Negative Emissions Technologies)

Roadmap Recommendations

- Advance Early-Stage RD&D
- Invest in Multiple Process Strategies
- Scale through Demonstrations
- Address Process Heating
- Decarbonize Electricity Sources
- Integrate Solutions
- Conduct Modeling and System Analyses
- Engage Communities, Develop a Thriving Workforce

*Subsectors included in Roadmap analysis: Iron & Steel, Chemicals, Food & Beverage, Petroleum Refining, and Cement. (Near zero GHG scenario, excluding feedstocks.

DOE Industrial Decarbonization Roadmap, Sept. 2022. https://www.energy.gov/eere/doe-industrial-decarbonization-roadmap

11% of <u>All</u> U.S. Energy-Related GHG Emissions are from Industrial Heat

Develop cost competitive industrial heat decarbonization technologies with at least 85% lower greenhouse gas emissions by 2035

Industrial Heat Shot – Pathways to Reduce Emissions from Thermal Systems

Goal: Reduce the amount of heat and/or emissions from heat to make cleaner products

Generate Heat from Clean Electricity

Reduce Emissions: electrify equipment & use clean electricity, improve energy efficiency

Examples:

heat pumps, microwave heating, resistive heating, etc.

Reduce Emissions: switch to low-emissions heat sources and increase thermal storage

Examples:

solar thermal, nuclear, geothermal, hydrogen, some sustainable fuels, etc.

0 Ē

Innovative Low- or No-**Heat Process Technologies**

Reduce Emissions:

new chemistry and emerging approaches to reduce heat demand

Examples:

advanced separations, electrolysis, ultraviolet curing, biobased manufacturing, etc.

Enabling technologies and systems: e.g. energy storage, materials, modeling, data analytics, etc.

www.energy.gov/eere/industrial-heat-shot

Decarbonization of process heating will require a multi-modal strategy.

Process heating represents more than 50% of manufacturing end-use energy, but less than 5% of process heating is electrified.

Over 50% of process heating demand is low temperature (<150°C) – prime candidate for electrification, while other high temperature process heat needs will require alternative thermal processing technologies.

■<80 ■80-150 ■150-300 ■300-550 ■550-1100 ■>1100

Data sources: DOE *Manufacturing Energy and Carbon Footprint*, based on EIA Manufacturing Energy Consumption Survey (MECS) data for 2018; C. McMillan, Manufacturing Thermal Energy Use in 2014. 2019. National Renewable Energy Laboratory. dx.doi.org/10.7799/1570008.

	Industrial sector								
Thermal process	Iron and steel	Petroleum refining	Chemical industry	Glass	Aluminum	Pulp and paper	Food processing	Cement	
Calcining									
Bonding, curing and forming									
Drying									
Fluid heating									
Heat treating (metal and nonmetal)									
Metal and nonmetal reheating									
Metal and nonmetal melting									
Other heating: processing				•					
Reactive thermal processing									
Smelting, agglomeration etc									
Steam generation									

Blue = low temperature (<800°F);

Orange = medium temperature (800°F to 1,400°F);

Red = high temperature (>1,400°F).

Thermal considerations:

- Higher process heat needs requiring combustion fuel?
 - Cement
- Are alternative heating technologies (e.g. electrification) technically challenging or costprohibitive?
 - Glass

Process considerations:

- Is this a process that traditionally requires direct-fired heating?
 - Melting and forming

Source: Decarbonization Options for Process Heating, Arvind Thekdi, 2022

Industrial Decarbonization is also a systems challenge

LCFFES = Low Cost Fuels, Feedstocks, and Energy Sources; CCUS = Carbon Capture Utilization and Storage

Industrial GHGs require approaches at multiple levels: Core process Facility

Beyond plant bounds

What are the implications of:

- Expanded H₂ generation & use
- New thermal energy sources & systems
- Smart manufacturing, automation, & data analytics
- Transition to clean
 electricity
- Policies

Source: Industrial Decarbonization Roadmap

DOE Industrial Decarbonization – Clean Hydrogen Opportunities

Industrial Decarbonization Pillars

Examples of hydrogen us by industrial subsector:

Iron & Steel	Chemicals
Alternative reductants – e.g., Clean H ₂ in direct	Clean H ₂ use as fuel or feedstock
reduced iron (DRI) and	
blast furnaces	

Intersectoral Collaboration

- Clean H₂ generation renewables, nuclear power, or fossil resources with carbon capture can reduce emissions of existing demand sectors.
- Clean H₂ and low-carbon electricity demand will increase significantly by 2050. R&D efforts will be needed to improve the efficiency of electrolyzers.
- Novel technologies for H₂ use heavy-duty vehicles, metal refining, synthetic fuels production, and stationary fuel cells can further enable emissions reductions.
- H₂ supply for grid services to increase resiliency.
- H₂ infrastructure advancements e.g. compression, pipeline and chemical carrier transport, and bulk storage

Food & Beverage	Refining	Cement
Clean H ₂ use for med temp process heat	Desulfurization using clean H ₂	Clean H ₂ as fuel

Global Hydrogen Value Chains

Current H₂ demand ~ 90 MMT 2030 forecast demand: 200 MMT

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY | INDUSTRIAL EFFICIENCY & DECARBONIZATION OFFICE

https://www.energy.gov/sites/prod/files/2020/07/f76/USDOE_FE_Hydrogen_Strategy_July2020.pdf

U.S. Hydrogen Demand Estimates

Current hydrogen production is ~10 MMT

U.S. National Clean Hydrogen Strategy and Roadmap forecast 50 MMT hydrogen production in 2050.

- Total 2050 Net Zero Hydrogen Demand for 6 EEII sectors is over 12 MMT
- Chemicals and Refining are largest consumers
 - >90% of total industrial hydrogen use
- In 2050 hydrogen remains more valuable as a feedstock than as a combustion fuel

Note: food & beverage and cement report negligible hydrogen demand under the net-zero scenario

PRELIMINARY DATA. DO NOT CITE.

The U.S. Chemicals Sector

- The U.S. chemical industry contributed over 25% to the total GDP in 2022, valued at \$486 billion.
- It manufactures 70,000+ distinct products across 11,000+ facilities.
- In 2022, the U.S. ranked as the world's secondlargest chemical producer, meeting nearly 13% of global demand.
- The sector **employs approx. 4.1 million individuals**, directly or indirectly.
- It consumes 25% of total primary energy within U.S. manufacturing.
- Responsible for 28% of GHG emissions in U.S. manufacturing.
- Historical data shows a 16% growth in chemical production from 2010 to 2020 ...
- ... and projections **suggest a further 20% growth** in basic chemical production between 2020 and 2050.

Emissions Across Chemicals Sector

Manufacturing Energy and Carbon Footprints: <u>https://www.energy.gov/eere/iedo/manufacturing-energy-and-carbon-footprints-2018-mecs</u> Manufacturing Energy Bandwidth Studies: <u>https://www.energy.gov/sites/default/files/2015/08/f26/chemical_bandwidth_report.pdf</u>

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY | INDUSTRIAL EFFICIENCY & DECARBONIZATION OFFICE

Source –Industrial Decarbonization Roadmap

Key message: If electrolysis – H_2 using grid-based electricity is applied too rapidly as a feedstock by 2030, CO₂ emissions could increase above BAU, whereas if its use as a feedstock is delayed until the electric grid is fully decarbonized, the increased emissions above BAU could be avoided. Direct use of renewable

FIGURE 23. CO₂ EMISSIONS (MILLION MT/YEAR) FORECAST FOR THE U.S. AMMONIA INDUSTRY BY SCENARIO WHEN ELECTROLYSIS HYDROGEN IS ADOPTED MODESTLY IN 2030-2050. SOURCE: THIS WORK. FIGURE 24. CO₂ EMISSIONS (MILLION MT/YEAR) FORECAST FOR THE U.S. AMMONIA INDUSTRY BY SCENARIO WHEN ADOPTION OF ELECTROLYSIS-H₂ IS DELAYED UNTIL THE ELECTRIC GRID IS DECARBONIZED. SOURCE: THIS WORK.

energy to supply the energy for H_2 generation could also avoid this issue.

Early Uses

- Process heat (especially high temperature)
- ✓ Blending with current H_2
- ✓ Ammonia (if energy for H_2 decarbonized)

Later Uses

- ✓ Methanol
- ✓ Ethylene
- \checkmark Ammonia (H₂ from energy via decarbonized grid)

19

Estimated Annual Energy (TBtu/year)

Benchmark

Fossil-based emissions

Decarbonization opportunity (avoided emissions)

Sources

- RSC Policy Briefing, Ammonia: zero-carbon fertilizer, fuel and energy store, 2020, https://royalsociety.org/topics-policy/projects/low-carbon-energy-programme/green-ammonia/
- IEA, Ammonia Technology Roadmap, 2021, Table 1.2, https://www.iea.org/reports/ammonia-technology-roadmap
- EPA, Inventory of U.S. Greenhouse Gases and Sinks: 1990 2019, https://www.epa.gov/sites/default/files/2021-04/documents/us-ghg-inventory-2021-main-text.pdf.
- INL, Nuclear-Integrated Ammonia Production Analysis, 2010, https://art.inl.gov/

Approximately 90% of ammonia emissions are from the generation of H_2 as feedstock

- Natural gas steam methane reforming (SMR) is the primary production route in the U.S.
- Autothermal reforming (ATR) and coal gasification are also commercial pathways to H₂ production.
- IEA's Ammonia Technology Roadmap provides a comprehensive list of late-TRL technology approaches to low-carbon hydrogen for ammonia production.
 - Energy and emissions analysis presents interesting trade-offs

PRELIMINARY DATA. DO NOT CITE.

Substantial Investments are Required to Meet Net-Zero Goals

Investment scale \rightarrow In the range of \$0.7 - \$1.1T

for 8 industrial sector of focus in the IRA :

Source: DOE Pathways to Commercial Liftoff; Industrial Decarbonization https://liftoff.energy.gov/industrial-decarbonization/

Chemicals

Steel

Food & Beverage

Cement

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY | INDUSTRIAL EFFICIENCY & DECARBONIZATION OFFICE

Research, Development, Demonstration & Deployment (RDD&D) Continuum

Closing Thoughts

Technology Investment Portfolios

- Investment strongly influences outcomes
- Too much diversification is a bad strategy
- It is essential to make targeted investments
- Should put a few eggs in the right baskets

Journal of Economic Dynamics and Control Volume 101, April 2019, Pages 211-238

Wright meets Markowitz: How standard portfolio theory changes when assets are technologies following experience curves

Rupert Way * b 2 🔯 , François Lafond * b c 🔯 , Fabrizio Lillo ^d e 🔯 , Valentyn Panchenko ^f 🔯 , |. Doyne Farmer ^{a g h} 🖂

Show more V

🕂 Add to Mendeley 🛛 🚓 Share 🏾 👥 Cite

https://doi.org/10.1016/j.jedc.2018.10.006

Get rights and content 2

https://doi.org/10.1016/j.jedc.2018.10.006

Thank you

Special Thanks to the IEDO Strategic Analysis Team

- ANL Sarang Supekar, Nwike Iloeje, Diane Graziano
- LBNL Arman Shehabi, Prakash Rao, Jibran Zuberi, Peng Peng

NREL – Alberta Carpenter, Samantha Reese, James McCall, Darlene Steward, Taylor Uekert, Hope Wikoff

ORNL – Sachin Nimbalkar, Kristina Armstrong, Prashant Nagapurkar, Kiran Thirumaran, Ikenna Okeke, Dipti Kamath

Energetics – Caroline Dollinger, Sam Gage, Brian Ray

joe.cresko@ee.doe.gov

For additional information:

https://www.energy.gov/eere/iedo/energy-analysis-data-and-reports