2024 DOE Hydrogen and Fuel Cells Program Annual Merit Review

IN025

H₂ Delivery Technologies Analysis

Amgad Elgowainy (PI), Krishna Reddi, Sajag Poudel, Sheik Tanveer, Zilong Fang, Kyuha Lee, Yi Ran Lu, Hla Tun, Pingping Sun

Argonne National Laboratory

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

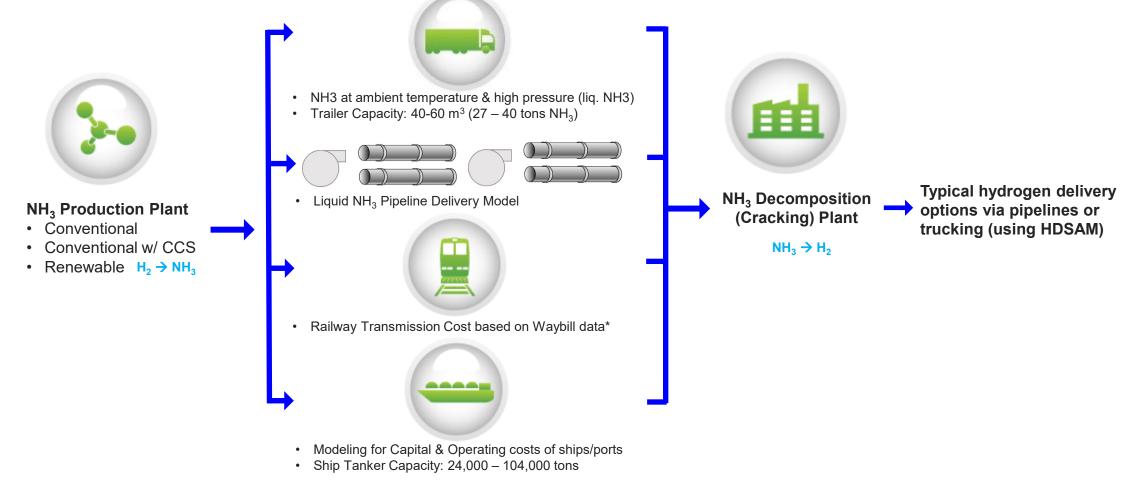
- Start: October 2005
- End: Determined by DOE
- % complete (FY24): 70%

Barriers to Address

- Inconsistent data, assumptions and guidelines
- Insufficient suite of models and tools
- Stove-piped/Siloed analytical capability for evaluating sustainability

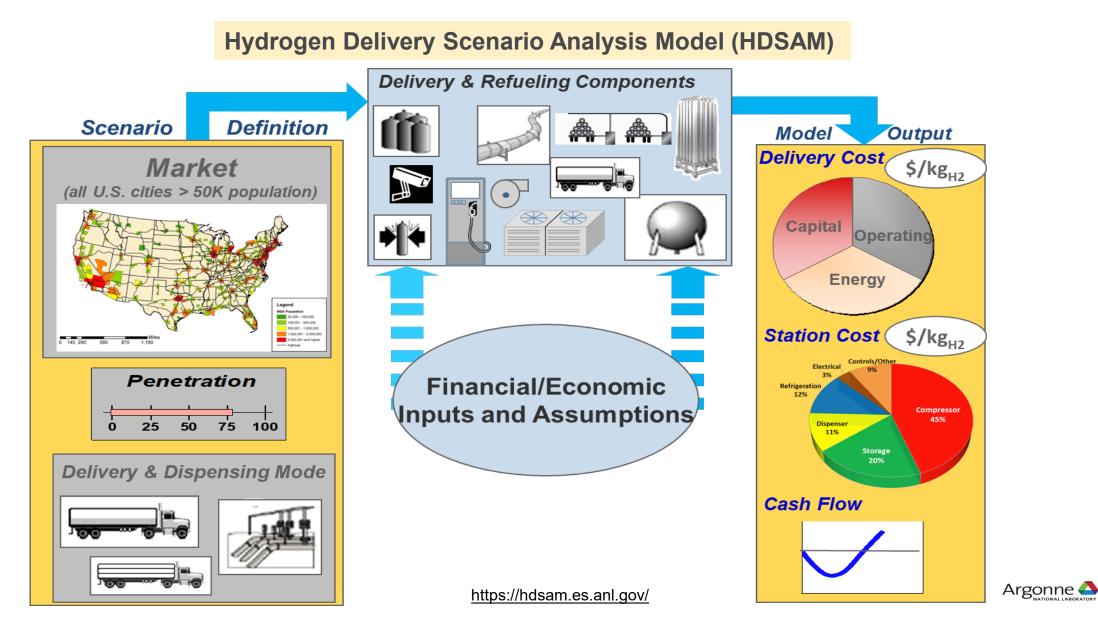
Budget

• Funding for FY24: \$500K

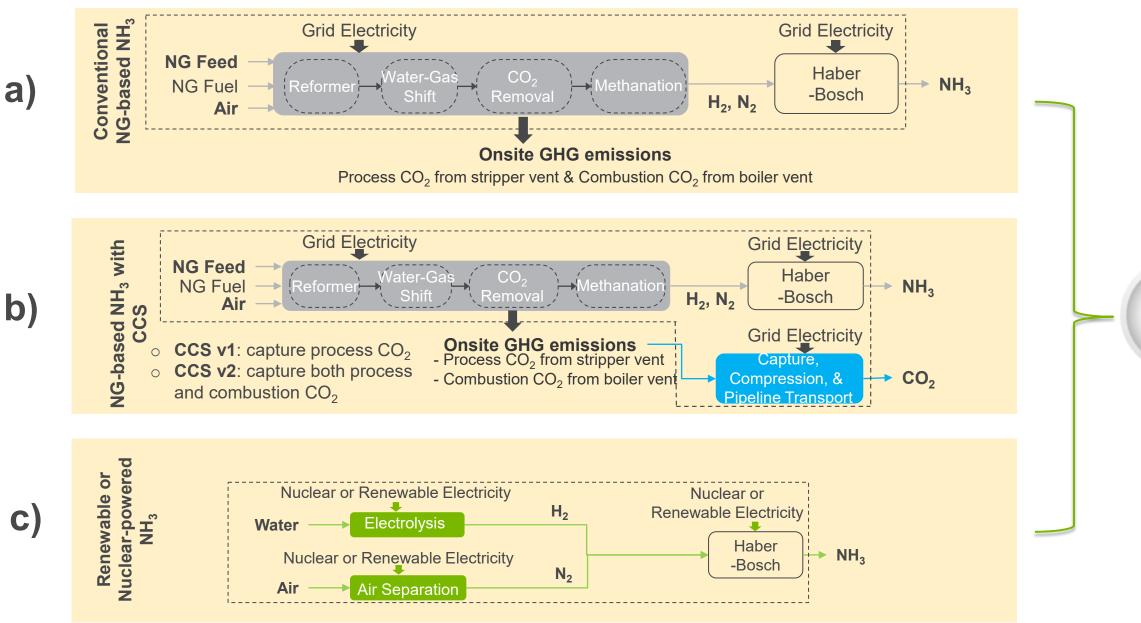

Partners/Collaborators

- Industry partners
- D. Papadias and R. Ahluwalia, Argonne
- Daryl Brown, Energy Technology Analysis

Evaluate alternative hydrogen delivery options via ammonia as a Goal/Approach/Strategy carrier

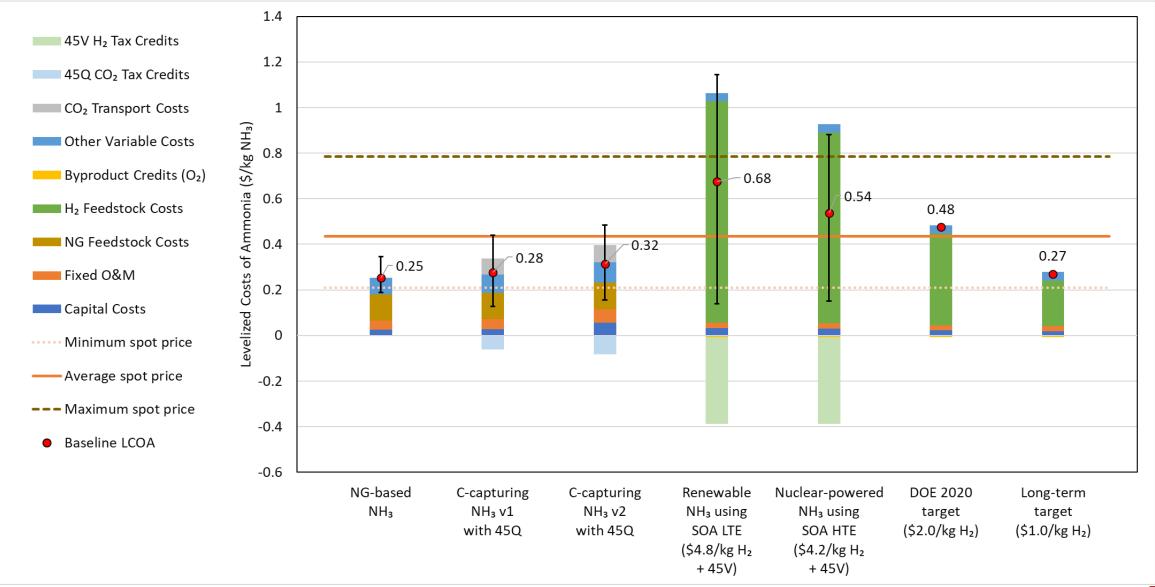

- > Cover entire supply chain pathways starting with ammonia production and ending with ammonia cracking
- Develop standalone Hydrogen Carrier Scenario Analysis Model (HCSAM)

*Surface Transportation Board – Carload Waybill Sample: https:// prod.stb.gov/reports-data/waybill/



Develop techno-economic modeling for evaluating cost of ammonia delivery technologies on HDSAM platform

[1] Three Production Pathways for NH₃ implemented in HCSAM


Accomplishment

Argonne

NH₃

NH₃ **Production Cost Varies by Technology and Feedstock** Accomplishment **options**

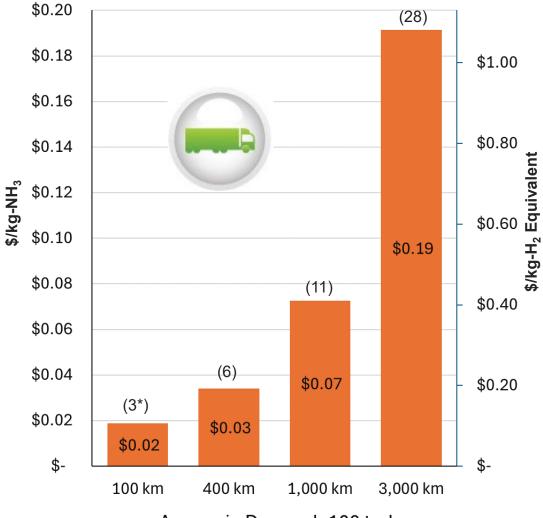
Lee , X. Liu , P. Vyawahare , P. Sun , A. Elgowainy and M. Wang , Green Chem., 2022, 24 , 4830 - 4844

Argonne

[2] Four Delivery Pathways for NH₃ implemented in HCSAM

a. Trucking

- b. Pipeline
- c. Rail
- d. Ocean tankers



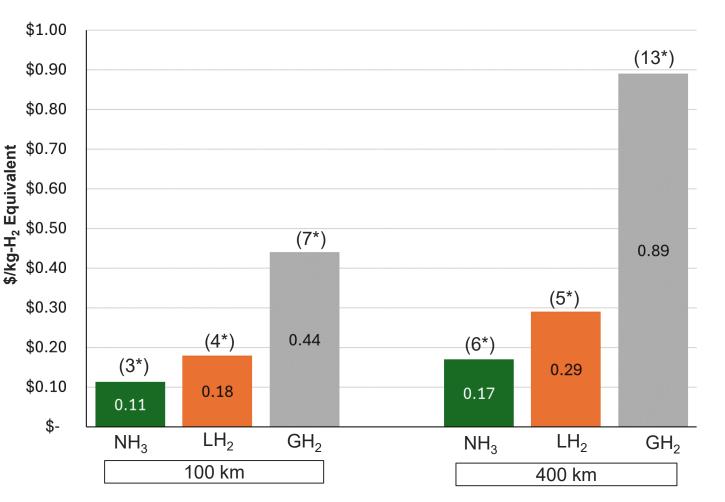
[2] a. NH₃ Transport by Truck-Trailer

Assumptions for Truck-Trailer Transport (can be changed in HCSAM):

- NH₃ Demand: 100 tons/day
- Transport Distance: 100 3,000 km
- Ammonia Trailer Capacity: 40 m³ (27.3 tons NH₃ → 4.82 tons H₂ equivalent, based on stoichiometry)
- Truck-Trailer Operation: 18 hrs/day
- Trailer Usable Capacity: 87.5%

Ammonia Demand: 100 tpd

Right-vertical axis is shown for cost based on stoichiometric equivalent of H₂; *Numbers at top of bars shows the number of truck-trailers required for transport


Truck-Trailer Transport of NH₃ is lower cost compared to H₂ Trucking

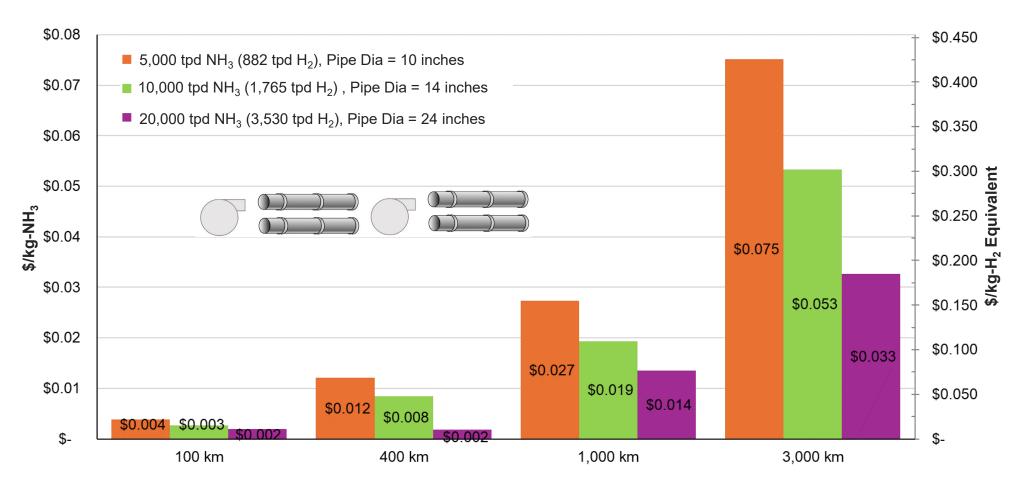
- ➤ Mainly because of higher hydrogen payload carrying capacity of NH₃ trucks
- But NH₃ production is additional overhead

Assumptions for Truck-Trailer Transport:

- NH₃ Demand: 100 tons/day
- Transport Distance: 100 400 km

Mode	Capacity
NH_3 Truck-Trailer	27.3 tons NH ₃ (40 m ³) (Equivalent H ₂ : 4.82 tons based on stoichiometry) NH ₃ Pressure = 16 bar
LH ₂ Tanker	3.8 tons H_2 (56 m ³) LH ₂ Pressure = 3 bar
GH ₂ Tube-Trailer	800 kg H ₂ (41 m ³) GH ₂ Pressure = 350 bar

*Indicates the number of trucks required for transporting 100 tons of NH₃ or equivalent H₂ per day

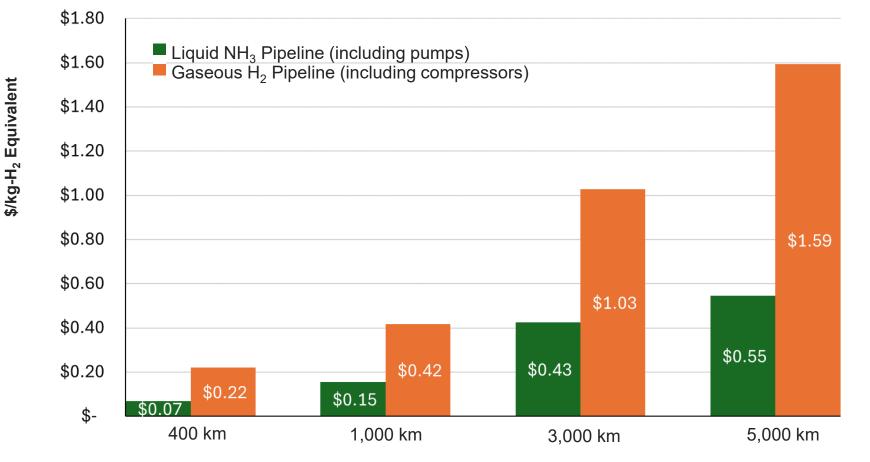


Accomplishment

[2] b. NH₃ Transport by Pipeline

Assumptions for Pipeline Transport of NH₃ (can be changed in HCSAM):

- NH₃ Demand: 5,000 20,000 tons/day (Equivalent H₂ Demand: 882 3,530 tons/day)
- Distance: 100 3,000 km
- NH₃ pressure at origin: 90 bar, minimum NH₃ pressure at destination: 60 bar

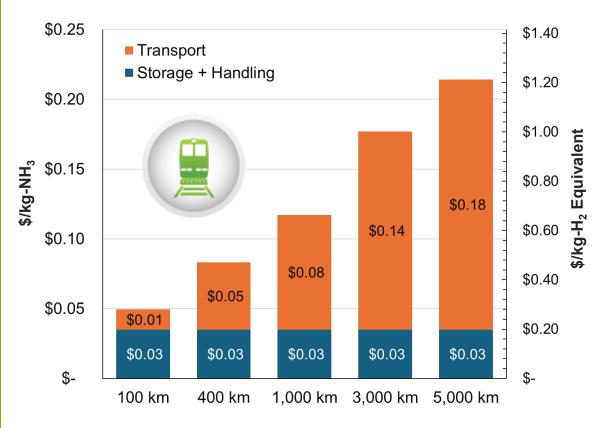

Pipeline Transport of NH₃ is lower cost compared to H₂

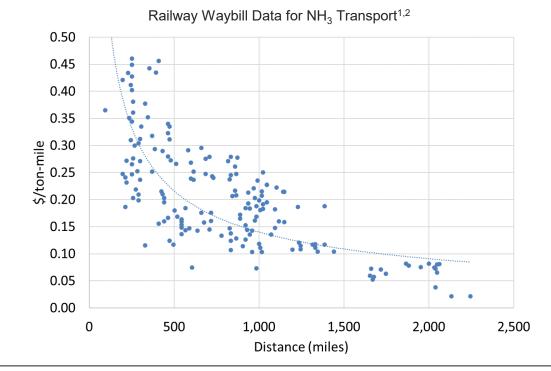
Accomplishment

- ➢ Mainly because of higher energy density of liquid NH₃ compared to gaseous hydrogen
- ➢ But NH₃ production is additional an overhead

Assumptions for Pipeline Transport:

- NH₃ Demand: 5,000 tons/day (Equivalent H₂ Demand: 882 tons/day)
- Distance: 400 5,000 km



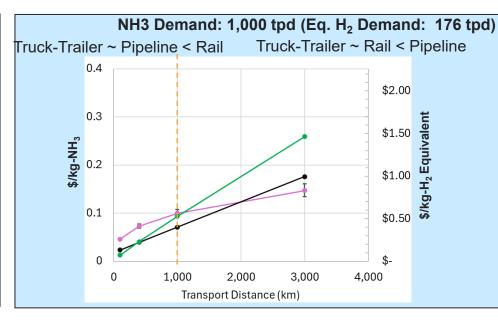

[2] c. NH₃ Transport by Rail

Assumptions for Railway Transport:

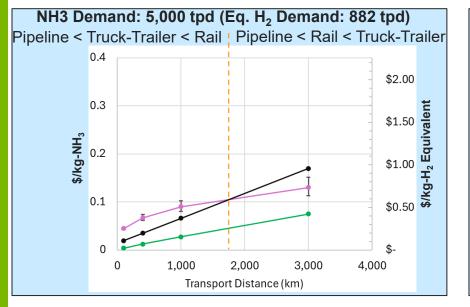
- Transport Distance: 100 5,000 km
- NH₃ transport cost based on Railway Waybill data^{1,2}
- \$0.035/kg-NH₃ is charged by Railway for storage and handling²

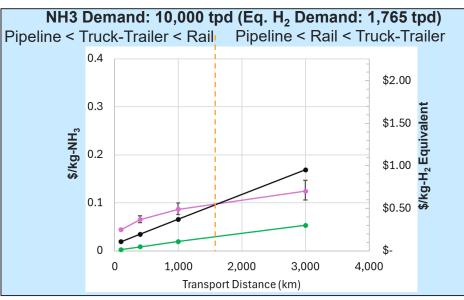
Right-vertical axis shows the cost of NH_3 transport in terms of stoichiometric equivalent hydrogen $k/kg-H_2$

 Railway transport of NH₃ is based on Waybill data and is obtained for 4,000 carloads annual supply of NH₃


 4,000 carloads/year is equivalent to 500-700 tpd assuming 50 - 70 tons/carload

¹Surface Transportation Board – Carload Waybill Sample: https://prod.stb.gov/reports-data/waybill/ ²Papadias et al. Int. J of Hydrogen Energy, 46(47), 24169-24189.




Comparison of Domestic Modes of NH₃ Transport Cost

- Truck-Trailers are lower cost compared to rail modes NH₃ transport for shorter distances
- Pipeline transport of NH₃ is economic for higher throughput/demand and for longer transport distances

The upper and lower bounds for Rail transport cost indicate the lowering of transport cost for higher demand using the scale factor ranging between 0.85 - 0.95

[2] d. NH₃ Transport by Ocean Tanker

HCSAM Parameters for Ship Tanker Transport of NH₃ (can be changed by user):

- 3 Options for Ship Tanker Capacity in HCSAM: ٠
 - \rightarrow 38,000 m³ (24,000 tons-NH₃) \rightarrow 85,000 m³ (52,000 tons-NH₃)
- Cruise Speed, Fuel Cost, Applicable Port Fees and Canal Crossing Fees ٠

\$0.12 Ship \$0.50 Port Infrastructures Case study¹ of NH₃ transport: \$0.10 Port Storage Transport Distance: \$0.40 Texas – Japan: 17,136 km \$0.08 \$0.20 \$0.20 \$ Texas-Netherlands: 9,397 km Oregon-Japan: 7,974 km \$/kg-NH₃ \$0.087 \$0.06 Connecticut-Netherlands: 6,048 km Max. Ship Capacity: $85,000 \text{ m}^3 \text{ NH}_3$, (52,000 tons-NH₃) \$0.045 \$0.044 \$0.04 Max. Dead Weight Tonnage: 80,000 \$0.032 Avg. Cruise Speed: 16 knots (30 km/hr) \$0.10 \$0.02 \$0.013 \$0.012 \$0.012 \$0.012 \$0.007 \$0.007 \$0.007 \$0.007 \$ \$-

TX-JP (17,136 km) TX-NL (9,397 km) OR-JP (7,974 km) CT-NL (6,048 km)

Data label shows cost breakdown in \$/kg-NH₃. Right-vertical axis shows the cost of NH₃ transport in terms of stoichiometric equivalent hydrogen \$/kg-H₂

¹Ahluwalia et al. 2023 DOE Hydrogen Program AMR. (2023)

•

٠

٠

٠

Accomplishment

[3] NH₃ Decomposition (Cracking) to H₂

Leveraged prior HFTO funded work by Dionissios Papadias

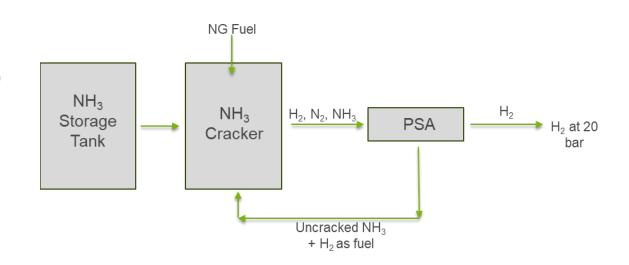
Parameters in Ammonia Decomposition Plant

1) Storage:

- Compressed gas cylinder (maximum size of 270 tonnes-NH₃)
- Refrigerated tank (4,500 tonnes-NH₃ to 50,000 tonnes-NH3)

2) Ammonia Cracker:

- 99% conversion rate by default*
 - (Option -1) Nickel based (800°C)*
 - (Option -2) Ruthenium based (550°C)⁺
- Cracker operating pressure: 20 bar
- Catalyst replaced once every 3 years


3) Separation:

- PSA (75% Purifying Efficiency)^

<u>4) Burner:</u>

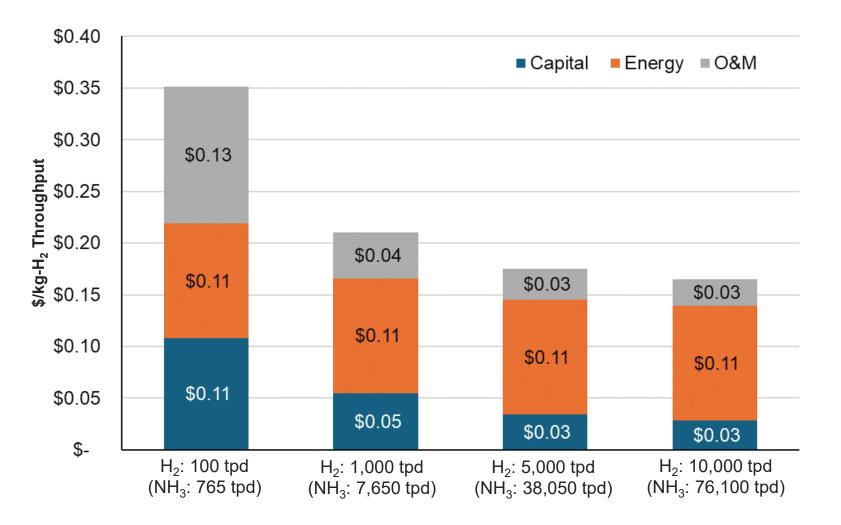
- Use natural gas + unconverted ammonia + unpurified hydrogen as feedstock

^Note: 75% of hydrogen is recovered while 25% is returned to use as fuel for burner

Schematic of NH₃ Decomposition Plant. *Source: Papadias et al. International Journal of Hydrogen Energy, 2021.* **46**(47): p. 24169-24189.

Other cracking technologies are currently being modeled in ASPEN-Plus for incorporation in HCSAM

*Papadias et al. International Journal of Hydrogen Energy, 2021. **46**(47): p. 24169-24189 *Lamb et al. (2019). *International Journal of Hydrogen Energy*, 44(7), 3580-3593

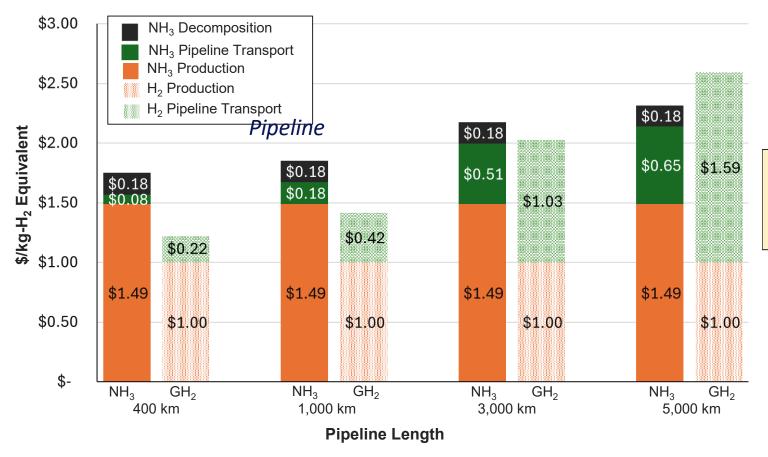


Cost of NH₃ Decomposition (Cracking) to H₂

Accomplishment

Assumptions for decomposition plant:

- Decomposition Plant Capacity: hydrogen throughput of 100 10,000 tons/day
- Overall Decomposition Plant Efficiency: (Considering 99% Cracker efficiency and 75% PSA efficiency): 0.131 kg-H₂/kg-NH₃*
- PSA has 75% absorption efficiency where uncracked NH₃ as well as H₂ not separated by PSA are recycled back to furnace


*NH₃ used for decomposition is implied in its upstream delivered cost

Argonne 🕰

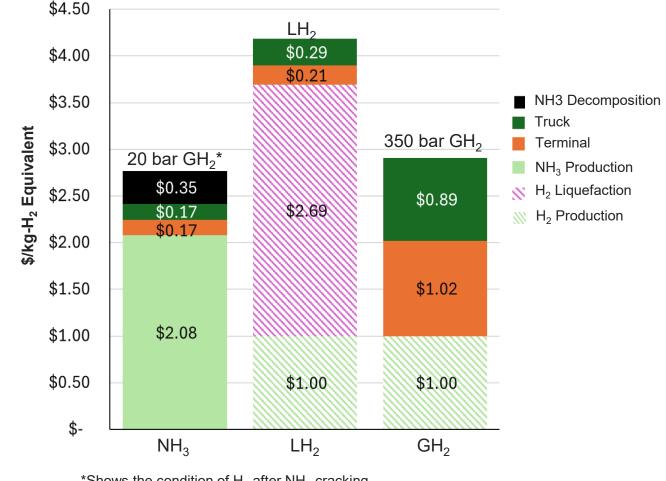
Total Cost of NH₃ Production, Transport and Decomposition, compared to Delivered H₂ Cost via Pipeline

Assumptions for Pipeline Transport:

- NH₃ Demand: 5,000 tons/day (Equivalent H₂ Demand: 665 tons/day*)
- Distance: 400 5,000 km
- NH3 production pathway: Conventional (NG based, \$4.2/MMBtu NG for NH₃ cost)
- Hydrogen production cost assumed to be \$1/kg

 ✓ For longer distance and higher throughput, transport of H₂ via NH₃ as carrier via pipeline can be lower cost compared to H₂ transport cost

Accomplishment


*Equivalent accounting for PSA absorption efficiency (75%) and NH3 cracker conversion efficiency (99%)

Total Cost of NH₃ Production, Transport and Decomposition, compared to Delivered H₂ Cost via Trucks

Assumptions for Truck-Trailer Transport:

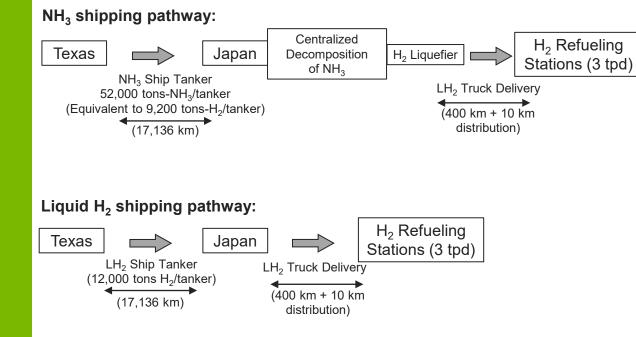
- NH₃ Demand: 100 tons/day
- Transport Distance: 400 km
- NH₃ Production pathway: Conventional (NG based, \$4.2 /MMBtu)
- H_2 production cost assumed to be \$1/kg for LH_2 and GH_2 pathways

Mode	Capacity
NH_3 Truck-Trailer	27.3 tons NH_3 (40 m ³) (Equivalent H ₂ : 4.82 tons based on stoichiometry) NH_3 Pressure = 16 bar
LH ₂ Tanker	3.8 tons H ₂ (56 m ³) LH ₂ Pressure = 3 bar
GH ₂ Tube-Trailer	800 kg H ₂ (41 m ³) GH ₂ Pressure = 350 bar

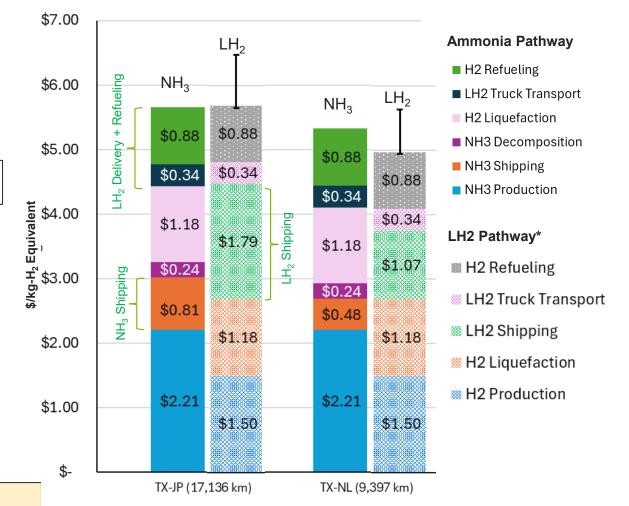
*Shows the condition of $\rm H_2$ after $\rm NH_3$ cracking

Transmission Cost of NH₃: HCSAM Liquefaction & Transmission Cost of LH₂: HDSAM

- \checkmark H₂ transport via NH₃ as carrier in trucks is lower cost compared to trucking GH₂ & LH₂
- ✓ LH₂ and compressed GH₂ have cost advantage for certain H₂ end use (e.g., FCEV refueling stations) compared to H₂ from cracked NH₃



Comparison of Inter-continental transport of Liquid H₂ vs. NH₃ as H₂ Carrier vs. & impact on FCEV Refueling Cost at End Use


Accomplishment

Assumptions:

- Case studies of inter-continental hydrogen transport via LH₂* & NH₃
- H₂ liquefaction capacity: 650 tpd (*current H*₂ *Liquefaction < 50 tpd*)
- H₂ or NH₃ Production Pathway: Conventional w/ CCS

- \checkmark Ship-tanker transport of NH₃ is lower cost compared to Liquid H₂
- ✓ Overall cost of NH₃ & LH₂ are comparable
- Improved PSA efficiency from 75% can improve economic benefit for NH₃ pathway

- Upper and lower bounds for LH₂ pathway indicate variation due to boil-off loss (0% to 0.5% per day)⁺
- H₂ Delivery and Refueling cost estimated from HDSAM

*Ahluwalia et al. System Level Analysis of Hydrogen Storage Options. 2023 DOE Hydrogen Program AMR.

⁺Petitpas, G. (2018). Boil-off losses along LH2 pathway. Lawrence Livermore National Lab.

Summary of Accomplishments, Challenges and Future Work

- Summary of accomplishments and Findings
 - Developed a comprehensive technoeconomic model (HCSAM) for NH₃ production, transport, and decomposition
 - Acquired data for entire ammonia value chain and implemented in HCSAM
 - The economics of physical H_2 delivery compared to its delivery in the form of NH_3 carrier depends on several factors:
 - Delivery amount and distance
 - Selected mode of delivery
 - End use of H₂ (e.g., industrial use vs. vehicle fueling)

Challenges and barriers

- Access to cost information for ammonia decomposition technologies
- Uncertainties with boiloff for LH₂ shipping via ocean tankers
- Future work
 - Release the first version of model Hydrogen Carrier Scenario Analysis Model (HCSAM) by the end of fiscal year
 - Incorporate additional ammonia cracking technologies using ASPEN-Plus modeling for incorporation in HCSAM
 - Consider incorporating value chain for other H₂ carriers such as methanol and Methylcyclohexane (MCH) in HCSAM

Summary/

Future Work

- Industry experts provides general review of logistic details and cost information
- Energy Technology Analysis who supported review of techno-economic model and cash flow calculations
- Dennis Papadias and Rajesh Ahluwalia from ANL for providing ammonia shipping and cracking cost data from prior funded HFTO projects

Project Summary

- Relevance:
 - Techno-economic modeling and analysis is needed for evaluating cost of H₂ delivery via NH₃ as energy carrier

Approach:

 Bottom-up techno-economic modeling to evaluate production, delivery and decomposition costs of ammonia as a hydrogen carrier

Collaborations:

- Collaborated with consultants and experts from industries

Technical accomplishments and summary of findings:

- Developed a comprehensive model (HCSAM) for NH₃ production, transport, and decomposition
- Acquired data for entire ammonia value chain and implemented in HCSAM
- The economics of physical H_2 delivery compared to its delivery in the form of NH_3 carrier depends on:
 - Delivery amount and distance
 - Selected mode of delivery
 - End use of H₂ (e.g., industrial use vs. vehicle fueling)

Future Research:

- Release Hydrogen Carrier Scenario Analysis Model (HCSAM) in public domain by the end of fiscal year
- Model NH₃ cracking technologies using ASPEN-Plus for incorporation in HCSAM
- Consider additional H₂ carriers such as methanol and Methylcyclohexane (MCH) for incorporation in HCSAM

ACCOMPLISHMENTS AND PROGRESS: RESPONSES TO PREVIOUS YEAR REVIEWERS' COMMENTS

- Inclusion of NH₃ as hydrogen carrier is consistent with international efforts to transport hydrogen worldwide. The focus on delivered hydrogen cost is very timely and appropriate.
- It would be good to see comparable data for the delivery of NH₃ and H₂ and costs to separate H₂ from both.

Thank you for the insightful comments and recommendations. We agree that as hydrogen production and demand scales up in the United States and abroad, there is growing need to understand the trade off between various hydrogen packaging and delivery options as a function of scale, distance, delivery mode, and end use applications. In FY24, we used the valuable feedback comments to expand the model and analysis to cover entire ammonia supply chain, including production technologies, delivery modes, and ammonia decomposition. We also compared delivering hydrogen in physical forms versus delivering it via ammonia as hydrogen carrier. The model will be released in public domain for use by the global hydrogen community. We further proposed in future work to expand the model scope to include additional potential hydrogen carriers such as methanol and methylcyclohexane (MCH) by covering their entire value chain.

