

Solid-State-Based Hydrogen Loss Recovery During LH₂ Transfer

Thomas Gennett Colorado School of Mines

DOE Hydrogen Program 2024 Annual Merit Review and Peer Evaluation Meeting

IN053 DE-EE0011104

Photo from iStock-627281636

This presentation does not contain any proprietary, confidential, or otherwise restricted information

<u>GOAL</u>: Design, engineer, construct, and demonstrate a materialsbased solution for the capture of H_2 from LH₂ boil-off loss events.

<u>FINAL DELIVERABLE</u>: Scalable prototype operating on-site to capture H_2 losses from a LH_2 transfer event and detailed technoeconomic analysis (TEA) evaluating financial feasibility, which includes evaluation of end uses for the captured H_2 .

Overview

Timeline

Phase 1: 3/1/24 to 2/28/25 **Phase 2:** 3/1/25 to 2/28/26 Phase 3: 3/1/26 to 2/28/27 Project continuation determined annually by go/ no-go metrics

Budget

Total 3/1/24 -2/28/25: \$2M Total Project: \$6M

Barriers to Overcome

General:

A. Cost, B. Weight and Volume, C. Efficiency,

E. Refueling Time

Reversible Solid-State Material:

M. Hydrogen Capacity and Reversibility

O. Test Protocols and Evaluation Facilities

Critical Partners

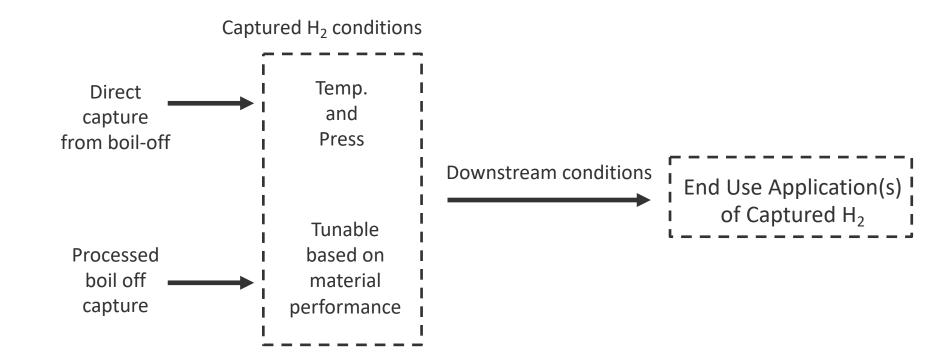
- National Renewable Energy Laboratory
- Airbus
- Stoke Space
- Lawrence Berkeley National Laboratory
- Metropolitan State University of Denver

LH₂ will be a key component of decarbonizing heavy-duty vehicle and aviation industries. Demonstrating boil-off loss mitigation is critical to accelerating industry adoption.

Project outcome	Impact
Report detailing TEA of materials-based system for recovering H_2 boil-off from LH_2 transfers.	Report will demonstrate economic feasibility and be a guide for developing TEAs specific to other LH ₂ recovery applications.
Lab-scale prototype for testing materials of interest under conditions representative of various LH ₂ loss event conditions.	The results will provide industry with a manageable list of materials to consider for H ₂ recovery based on specific system requirements.
Prototype integrated with a LH ₂ loss event to recover H ₂ that would otherwise be released to atmosphere or flared.	Published report detailing prototype and results will provide a road map for integrating H ₂ recovery systems into LH ₂ infrastructures and demonstrate technical feasibility.

Approach: Project Overview

Task	Task deliverables
Identify target H ₂ loss event for prototype integration	 Measure properties of hydrogen boil-off release during standard operation procedures (pressure, temperature, & rates) Define material property parameter space based on target loss event release conditions
Down selection to material(s) for prototype demonstration	 Design and build lab-scale prototype for testing materials under varying uptake and release conditions. Evaluate materials of interest at lab scale to determine performance under boil-off conditions (including gas temperature, pressure, and release rate) for material down select.
TEA of LH ₂ boil-off recovery system including end use scenarios	 Report detailing TEA of materials-based LH₂ boil-off recovery system including evaluation of recovered H₂ end uses
Design, build, & demonstrate a kg scale materials-based H ₂ boil-off recovery system	 Prototype integrated with a boil-off H₂ loss event, validating the technology performance for H₂ recovery and cost savings. Publish details of on-site system design and integration with LH₂ infrastructure and the final system efficacy

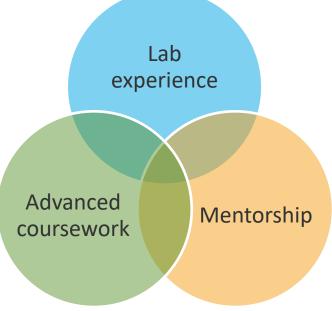

Approach: material down select

Identified target loss event defines material property parameter space: required H₂ uptake kinetics

Materials of interest identified based on HyMARC expertise

Initial down-select: equilibrium gas capacities at relevant pressure and temperatures. Evaluation of down-selected material sorption properties under relevant operating conditions representative of target loss event.

Approach: TechnoEconomic Analyses (TEA)



TEA will guide system design for net energy and monetary loss minimization.

Approach: DEIA

Bridge-to-career program with first-in-the-nation models for students from underrepresented (URM) groups to provide **skills** and **laboratory experience** critical to a successful industry or national laboratory career.

- Collaboration with Metropolitan State University of Denver, a Hispanic serving institution (HSI)
- Tailored Coursework plus Research Experience with researcher at Colorado School of Mines, National Renewable Energy Laboratory, Stoke Space, or Lawrence Berkeley National Laboratory
- Tiered Mentorship with Trained Mentor
- Networking and community engagement opportunities

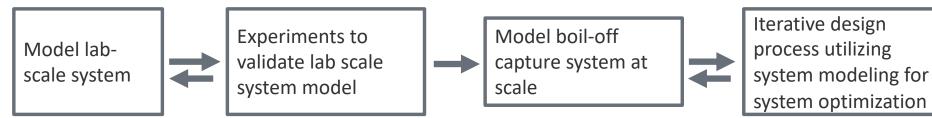
Approach: safety planning and culture

Safety is the priority within this project at all sites:

- World-class expertise from research scientists, engineers and safety personnel is available on-site at each site
- All OSHA and DoE Hydrogen Safety Best Practices will be followed
- All project team members will attend relevant training courses including those on: cryogenics, electrical, chemical waste, pressurized gas energetics, etc.
- Extensive safety training and mentoring will be required of all new interns, graduate students, postdocs etc.
- Scope of work will be defined, evaluated for safety, and approved by safety personnel prior to initiating any research activity
- Systems will be designed with safety prioritized and reviewed by safety engineers at the respective laboratories at the design and readiness verification stages
- Detailed documentation of hazards, procedures, and maintenance will be written for all new instrumentation and capabilities developed

Accomplishments and Progress

- Successful face-to-face kick-off meeting
 - Initial project tasks established for each partner
 - Project communication planned including monthly meetings and method of data sharing.
- Initial materials of interest defined.
- Initiated lab-scale prototype design.
 - Prototype to be used to evaluate materials under *in operando* conditions.


Remaining Challenges and Barriers

Challenge: Ensuring material properties and system design at lab-scale will successfully translate to large scale system.

Mitigation: Model system at scale

- Gas flow as function of tank design
- Gas interaction with material as function of material form factor
- Heat generation and profile
- Efficacy of heat management system design

Summary

This project is focused on the engineering of a critically needed, materials-based solution for the capture of H₂ from boil-off loss events.

- Mitigating hydrogen (H₂) losses throughout all stages of transfer operations is critical to enabling liquid hydrogen (LH₂) as a high use and high-capacity energy storage reservoir, both in terms of cost and in limiting the environmental impact of H2 as an indirect greenhouse gas.
- Project deliverables:
 - Scalable prototype operating to capture H₂ losses from a LH₂ transfer event
 - Detailed technoeconomic analysis (TEA) evaluating financial feasibility, which includes evaluation of reliquification and/or power generation as end uses for the captured H₂.

This project is the pathway to design, develop, engineer, and demonstrate a materials-based LH2 boiloff recovery system.

Acknowledgements

EERE Funding

NREL: Sarah Shulda, Cullen Quine, Craig Marshall, Karen Heinsleman Stoke Space: David Buckley Biggs, Katherine Cruz LBNL: Hanna Breunig, Peng Peng Airbus: Sean Jones MSU of Denver: Megan Lazorski (DEI)

Thank You!