

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

HFTO Hydrogen Production Overview

David Peterson, HFTO – Hydrogen Production Program Manager

2024 Annual Merit Review and Peer Evaluation Meeting

May 7, 2024 – Arlington, VA

The Hydrogen and Fuel Cell Technologies Office (HFTO)

Mission	Research, demonst hydrog technolo	 development, and ration (RD&D) of Clean Energy and Emissions Reduction Across Sectors en and fuel cell Job Creation and a Sustainable and Equitable Energy Future ogies to advance: 				
	HFTO Subprograms					
Hydrogen Technologies		hnologies	ogies Systems Development & Integration			
Hydrogen Production Hydrogen Infrastructure			Transportation Chemical & Industrial Processes Energy Storage & Power Generation	Enabling		
Systems Analysis			Safe	ety, Codes & Standards	H2@Scale.	
Crosscutting	Crosscutting / Enabling: manufacturing, supply chain, workforce, regional clean H ₂ networks					

Hydrogen Production Subprogram Overview

H₂ Production subprogram directly supports the National Clean Hydrogen Strategy and Strategic Priority #2

Focus on hydrogen production pathways that utilize renewable/clean resources

U.S. DEPARTMENT OF ENERGY

OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE

Hydrogen Energy Earthshot Technology Assessments

Purpose

- Track technology status and RD&D improvements, including identifying key challenges and opportunities for cost reduction and technology advancement
- Identify scenarios with potential to meet H2 Shot goal

Three Technology Assessments

- Thermal Conversion Pathways (FECM-led): Published
- Water Electrolysis Under final review
- Advanced Pathways (with Office of Science): Output from Technical Experts Meeting

	Tashualama
8 Primary Pathways	Steam Methane
Searthshots	Reforming
U.S. DEPARTMENT OF ENERGY	Reforming
HYDROGEN SHOT	Partial Oxidation
TECHNOLOGY ASSESSMENT: THERMAL CONVERSION	Plasma Pyrolysis
ILED	Gasification
DUBLISHE	Chemical Looping
	Dry Reforming of Methane
	In Situ Reforming
5 Primary Pathways	Technology
	Liquid Alkaline
HYDROGEN SHOT TECHNOLOGY ASSESSMENT: WATER ELECTROLYSIS	Proton Exchange Membrane
TUEN	Oxide-lon Conduc Solid Oxide
NALREV	Alkaline Exchang Membrane
FILM	Proton-Conductir Oxide
4 Primary Pathways	Advanced
<i>Rearthshots</i>	Pathway
U.S. DEPARTMENT OF ENERGY	Photo- electrochemi (PEC)
TECHNOLOGY ASSESSMENT:	
ADVANCED PATHWAYS	Solar Thermochem (STCH)
DRAFT	
NITIAL	Biological Conversion
	Hybrid Approache

Technology Commerc		ial ced	Feedstock(s)	Potential By- Products	Carbon Emissions Control ^{1,2}		
Steam Ref	Steam Methane Reforming				n/a	Pre-/post-combustion CO ₂ removal	
Auto Ref	Autothermal Reforming		Natural Gas		Argon	Pre-combustion CO ₂ removal	
Partial	Oxidation	Commerc	cial		Argon	Pre-combustion CO ₂ removal	
Plasma	a Pyrolysis				Carbon Black	Sequestration in solid carbon product	
Gas	ification			Coal and/or Biomass	Argon, Slag, and/or Sulfur	Pre-combustion CO ₂ removal	
Chemic	cal Looping				Argon	CO ₂ separated via chemical looping process	
Dry Re Me	eforming of ethane	Advance	ed	Natural Gas	Argon	Pre-/post-combustion CO ₂ removal	
In Situ	Reforming				Argon	CO ₂ trapped in situ	
Те	chnology		Cor	nmercial Status	Advantages		
Liquid Alkaline		Commercial • Low-cost materials • Proven long <u>lifetime</u> • Established supply chain & manu processes		aterials 9 <u>lifetime</u> supply chain & manufactu	uring		
Proton Exchange Membrane		Commercial		High current density at high efficiencyDifferential pressure operationDynamic operation capability			
Ox So	Oxide-Ion Conducting Solid Oxide		Early Commercial		High electrical efficiencyThermal energy integration		
Alk	kaline Exchan mbrane	ge	Pilot		Low-cost materialsDynamic operation capability		
Proton-Conducting Solid Oxide		ing Solid	Laboratory		High electrical efficiency Thermal energy integration Lower cost materials and operating temperature than O-SOEC		
	Advance Pathwa	ed y		Орј	portunities and C	hallenges	
Photo- electrochemical (PEC)		Solar pi and ins photoel 30% un scale, li	Solar photoelectrochemical hydrogen production is a low-temperature process that bypasses the need for elec and instead directly uses sunja(ht to split water into hydrogen and oxygen. It is based on semiconductor photoelectrobes and/or photocatalysts that offer theroretical potentials for solar-to-hydrogen (STH) efficiency at 30% under optimized circumstances. PEC hydrogen production has been demonstrated extensively at the lab case, leveraging diverse semiconductor materials systems and catalysts, with early scale-up efforts underway Direct solar thermochemical hydrogen production is another promising technology with the potential to achieve theoretical solar-to-hydrogen conversion efficiencies. STCH processes can be divided into two broad catagoris direct cycles, which use concentrated solar thermal energy (at temperatures spical) > 1000-C1) of we a two- metal oxide reduction/coldation reaction to split water, and (2) hydrid cycles, which use lower temperature themochemical electrochemical step. Various STCH cycles have been demonstrated at the laboratory scale, limited small scale reactor demonstrations.			for electricity ency as high a the laboratory derway.	
	Solar Thermochemical (STCH) Biological Conversion					achieve high itegories: (1) a two-step ire ver) coupled v scale, with	
			processing hydro ysis cell matter as hybr	es take advantage of the al gen. In direct hydrogen fer s (MECs) are devices that combined with an additiona id systems have been dem	bility of microorganisms to mentation, the microbes harness the energy and p al small electric current to onstrated at the laborator	o consume and digest bio- and waste produce the hydrogen themselves. N protons produced by microbes breaki produce hydrogen. Both fermentatii y scale, with scale-up efforts underw	-streams while ficrobial ing down on and MECs /ay.
Hybrid		In addit explore	ion to th hybrid	e advanced pathway techr approaches coupling electr	nologies covered in the at ochemical, photochemica	ove categories, there are unique op al, thermochemical, and/or biological	portunities to processes to

Updated HFTO Multi-Year Program Plan (MYPP)

- Sets forth HFTO's mission, goals, and strategic approach for each subprogram
- Identifies challenges, provides market-driven targets, and lays out plans with key RD&D priorities and milestones for meeting those targets and overcoming challenges

et 2026 2031	\$2/kg H ₂ \$1/kg H ₂	
et 2026		
	¢2/kg Ц	
Near-term 2025	Mid-term Longer 2030 Term	-
	Near-term 2025	Near-term Mid-term Longer 2025 2030 Term

Hydrogen Production's Role in DOE H₂ Program RDD&D Portfolio across TRLs

Increasing Technology Readiness Level (TRL)

Clean Hydrogen Electrolysis Program (Sec. 816)

- **\$1B**: \$200M/yr (FY 2022-2026)
- Goal: Reduce electrolytic H₂ production cost to \$2/kg clean H2 by 2026
- RDD&D program for commercialization purposes to improve efficiency, increase durability, and reduce cost of electrolyzers.

Clean Hydrogen Manufacturing & Recycling Program (Sec. 815)

- **\$0.5B**: \$100M/yr (FY 2022-2026)
- **Goal:** Enable manufacturing and recycling of clean H₂ technologies.
- Broad language to support domestic manufacturing and supply chains
- RD&D approaches for recycling/reuse

Hydrogen Production Core Budget*

Program Direction

H2 Production

- Bio-based hydrogen production, including biological and carbon negative pathways
 - FECM Carbon Negative Shots Pilots FOA
- Direct Water Splitting
 - PEC and STCH
- H2 Shot Incubator Prize
- All electrolysis work is being supported under the BIL Sect. 816 Clean Hydrogen Electrolysis Program as well as Sect. 815 Clean Hydrogen Manufacturing and Recycling Program

FY25 Request	Clean H ₂ Electrolysis (BIL)
\$15 million	\$200 million/yr over 5 yr
	, ,

*Core budget complements BIL funding

Hydrogen Production RD&D Execution Strategy/Approach

Consortia Model for Enhanced Collaboration: *Leverage world-class national lab expertise & facilities with an influx of new ideas and industry/university partners*

H₂ Production: Consortia-Supported RD&D

Advanced materials development for:

- Photoelectrochemical (PEC)
- Solar thermochemical (STCH)
- High-temperature electrolysis (HTE)
- Low-temperature electrolysis (LTE)

<u>New website:</u> www.energy.gov/eere/h2awsm

Presentation: P148 (Tuesday, 11:00am) Posters: P148A-E (Tuesday)

PGM-free catalyst development for LTE

http://www.electrocat.org

Presentation: FC160 (Tues., 9:30 am in FC Session)

Component integration, accelerated stress test development for:

- Proton exchange membrane (PEM)
- Liquid alkaline (LA)
- Oxide ion-conducting solid oxide (O-SOEC)

https://h2new.energy.gov/

Presentation: P196 (Tuesday, 1:45pm) Posters: P196A-H (Tuesday)

Roll-to-Roll (R2R) Consortium

Advancing efficient, high-throughput, and high-quality manufacturing processes

Task Areas

- Materials Scale-Up Science
- MEA Fabrication
- Quality Control
- Process Modeling and AI / ML
- Characterization for Mfg Environment
- Technoeconomic Analysis

CRADA Request for Proposals

- Collaborative projects with Industry and Labs
- Concept Papers Due June 3

http://www.nrel.gov/hydrogen /r2r-crada-call.html

Circular Recycling for the Hydrogen Economy Consortium (H₂CIRC)

Developing a robust domestic recovery and recycling capability for electrolyzers and fuel cells

Goal: Demonstrate pilot-scale validation activities over the entire recycling process along with analysis, digital passport, and community benefits/energy equity.

Impact: Establish approach for recycling electrolyzers and fuel cells, long-term supply chain security, and environmental sustainability.

Primary Project Tasks

Automated Stack DisassemblyMEA Disassembly and Recycle*AnalysisDigital Material Passport		MEA Disassembly and Recycle*	AIChE (Lead) Chemours Plug Power	Delaware State U. U. of Delaware Worchester Poly	
		Cummins Heraeus	University of Houston ORNL		
Community Benefits		Johnson Matthey Nel Hydrogen	NREL LBNL		
ludes PGM reclamation and ionomer recycling			g General Motors	Strategic Analysis Inc.	

Key Participants

Develop cost-effective, sustainable processes to recover and reuse >70% of ionomer and ≥95% of PGMs

Hydrogen Production Advanced Pathways

Hydrogen Shot Advanced Pathways Technical Experts Meeting

Gathered ~40 experts to discuss knowledge gaps and address applied science/engineering needs to accelerate progress

• Identify systems with potential to meet H₂ Shot goals

- Formulate technical, economic, and social value proposition
- Advance rigorous technoeconomic & life-cycle analysis

Conversion Processes

- Electrochemical
- Thermochemical
- Photochemical
- Biological/Microbial
- Hybrid Approaches

Aligned with Basic Energy Sciences

Outcomes: Publish technology assessment focused on status, challenges, and opportunities for implementing these advanced pathways; & Contribute to HFTO strategy for Advanced Pathways

Hydrogen

Hydrogen Shot Incubator Prize

Incentivize innovative off-roadmap technologies with the potential to achieve the Hydrogen Shot

 Break down barriers for inventors and researchers and accelerate progress by complementing traditional FOA process

 Provide access to the national labs through vouchers

PAX Scientific Richmond, CA	Development of water purification system to enable use of high-salinity or non-potable water for electrolysis
NX Fuels Ann Arbor, MI	Development of solar-hydrogen device using low-cost, industry ready materials.
Electro-Active Technologies Knoxville, TN	Integration of solar technologies, algae, and microbial electrolysis for hydrogen production from waste.
Green Fortress Engineering Indianapolis, IN	Development of low-cost, efficient hydrogen separation membrane for an indirectly heated pyrolytic gasifier

For more information on the winners visit: www.herox.com/HydrogenShotPrize

- HFTO, in partnership with FECM, will support one project (up to \$7M) under AOI 1 – Small Biomass Carbon Removal and Storage (BiCRS) Pilots
 - Applications under review with selections expected in late summer
- Design, build, and test an integrated BiCRS pilot project with hydrogen co-production

A Key Finding from the **Roads to Removal Study:** One of the most cost-effective and promising strategies for large scale carbon removal is to produce hydrogen from biomass and store the carbon

HydroGEN Accomplishments (Node Support and Core Lab Efforts)

PEC

LBNL and NREL worked with **University of Michigan** (Zetian Mi, P209) to identify stability of N-terminated GaN photoabsorbers resulting in 3,000 hr operation of two-electrode configurations with no performance degradation.

Demonstrated bias-free water splitting with a III-V photocathode at over 5% STH efficiency for more than 200 hours at **neutral pH (NREL/LBNL)**

On-sun fixture will test FOA project novel materials

STCH

HydroGEN node experts are working with **Saint Gobain** (Xin Qian, P217) to predict water splitting rates of promising materials using ab initio calculations **(LLNL)** and to develop a viable STCH reactor for on-sun testing **(SNL)**. High throughput materials discovery demonstrated a water splitting material predicted from theory-guided design using a newly developed and trained Machine Learning algorithm significantly increasing material screening speed. (**SNL/LLNL**)

> **BaFe**₂**O**₄ – predicted water splitter (Al \rightarrow increased hi-T stability)

Benchmarking and Protocol Development for Advanced Water Splitting Technologies

5th Annual Benchmarking Meeting Held September 20-22, 2023 at ASU

Pacific Northwest

nel•

Caltech

6th Benchmarking Meeting ASU California Center in Los Angeles June 10-12, 2024 REGISTRATION OPEN <u>Goal:</u> Develop best practices in materials characterization and benchmarking: Critical to accelerate materials discovery, development, validation, and adoption

- Completed 59 test protocols across the four H₂ production technologies involving more than 100 authors
- Published a first set of 20 protocols in an open access journal receiving over 10,000 downloads
 - 8 LTE, 4 HTE, 5 PEC, 3 STCH

Prioritizing protocols for validation testing and improvement, with first validations underway

The next level of Advanced Water Splitting Technologies Protocols are being written.

P170, Mon 3:45

OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

Hydrogen Production Electrolysis

Support of Diverse Electrolyzer Types

- Multiple electrolyzer types, classified by operating temperature and electrolyte type, have potential to meet cost and technical targets
- Each technology has advantages and drawbacks with unique benefits and pathways to achieve H₂ production cost goals
- Electrolyzers are at different TRLs and supported accordingly

Technology Commercial Status		Advantages	
Liquid Alkaline	Commercial	 Low-cost materials Proven long lifetime Established supply chain & manufacturing processes 	
Proton Exchange Membrane	Commercial	 High current density at high efficiency Differential pressure operation Dynamic operation capability 	
Oxide-Ion Conducting Solid Oxide	Early Commercial	High electrical efficiencyThermal energy integration	
Alkaline Exchange Membrane	Pilot	Low-cost materialsDynamic operation capability	
Proton-Conducting Solid Oxide	Laboratory	 High electrical efficiency Thermal energy integration Lower cost materials and operating temperature than O-SOEC 	

New BIL FOA awards and lab call projects are supporting this approach

BIL Lab Call – Advanced Materials, Components, and Interfaces for Electrolyzers

Tech.	Lead Laboratory / Lead Pl	Project Title
	Sandia National Laboratory Cy Fujimoto	Advanced Hydrocarbon Based Proton Exchange Membrane Water Electrolyzers
PEM	Los Alamos National Laboratory Jacob Spendelow	Ultralow Iridium Catalysts with Controlled Morphology and Speciation
	Argonne National Laboratory Ahmed Farghaly	Accelerated Discovery of Metallic Pyrochlores OER Catalysts for PEM Water Electrolyzers: High-Throughput Computational and Experimental Approach
	National Renewable Energy Laboratory Abhishek Roy	Thin highly selective polymer membrane-separators for advanced LAW
LA	Oak Ridge National Lab Jun Yang	Hierarchically Structured Advanced Electrodes for Alkaline Water Electrolyzers
	Lawrence Livermore National Laboratory Johanna Schwartz	Studying-Polymers-On a-Chip (SPOC): Increased alkaline stability in anion exchange membranes
	Lawrence Berkeley National Laboratory Xiong Peng	Hierarchical electrode design for highly efficient and stable anion exchange membrane water electrolyzers
0.0050	Pacific Northwest National Laboratory Olga Marina	Stable High-Performing Oxygen Electrode for SOEC Operating at Lower Temperatures
0-50EC	SLAC National Accelerator Laboratory Nicholas Strange	Developing High-Entropy Materials as Superior Alternative Electrodes for Long-lasting Oxide-Conducting Solid Oxide Electrolysis Cells (O-SOECs)
D 0050	Idaho National Laboratory Dong Ding	High Performance and Robust Proton Conducting Solid Oxide Electrolysis Cells Enabled by New Materials, Interfaces and Fabrication Methods
P-SOEC	Lawrence Livermore National Laboratory Joel Varley	Directed Search for Stable and Conductive Electrolytes for Next-Generation Proton Solid Oxide Electrolysis Cells

ELY-BIL002-012, Tues. evening poster session

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY	HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE
--	--

20

BIL 816 Lab Call - H2LinkSc Pilot Projects

- HFTO lab projects coordinate with DOE Office of *Science Energy Earthshot Research Centers* (EERCs), *Energy Frontier Research Centers* (EFRCs), and other activities to bridge across basic and applied science
- Collaborative activities could include:
 - Science & technology symposia
 - Sample exchanges and data sharing
 - Hosting students across institutions

Four H2LinkSc Pilot Projects focus on electrolysis: aligned with Priority Research Opportunities identified by DOE-BES*

Electrolyzer Type	AMR Poster	Lead Organization	PI	H2LinkSc Bridging Opportunities
AEM	ELY-BIL005	Lawrence Livermore National Laboratory	Dr. Johanna Schwartz	Ionomer-based Water Electrolysis EERC; Center for Alkaline-Based Energy Solution EFRC; and the Center for Enhanced Nanofluidic Transport EFRC
O-SOEC	ELY-BIL011	Pacific Northwest National Laboratory	Dr. Olga Marina	Existing BES-supported projects at PNNL with expertise in materials design and modeling.
P-SOEC	ELY-BIL009	Idaho National Laboratory	Dr. Dong Ding	Both projects could "link" to the <i>Hydrogen for Energy and Information</i> Sciences EFRC focused on computation materials screening and modeling
P-SOEC	ELY-BIL010	Lawrence Livermore National Laboratory	Dr. Joel Varley	surface properties critical for stable operation of P-SOECs

*Foundational Science for Carbon-Neutral Hydrogen Technologies | Department of Energy

U.S. DEPARTMENT OF ENERGY	OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY	HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE
---------------------------	--	--

BIL 816 Clean Hydrogen Electrolysis Program FOA Award Selections

Source: HFTO <u>https://www.energy.gov/eere/fuelcells/bipartisan-infrastructure-law-clean-hydrogen-electrolysis-manufacturing-and-0</u>

BIL 816 FOA Funding Impacts

RD&D and manufacturing for domestic supply chain

Enables \$2/kg H₂ by 2026

RD&D for domestic manufacturing and support for H2 Hubs

10 GW/yr

Total Project Costs

Including **~\$470M** in federal cost share and **~\$590M** in cost share

900+

Direct jobs created

Plus, thousands of indirect jobs across the U.S.

Supports production of 1.3M metric tons of H₂/year

Benefiting 24 disadvantaged communities across the U.S. with initiatives in workforce development, energy equity, and DEIA

Analysis Efforts Identify Cost Reduction Strategies and Pathways to Achieve Cost Targets

To meet hydrogen production cost targets, need combination of high-volume manufacturing; technology advancements; and close integration of electrolyzers with low-cost, clean electricity sources

U.S. DEPARTMENT OF ENERGY 0

HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE

Analysis Efforts Identify Cost Reduction Strategies and Pathways to Achieve Cost Targets

Key Cost Drivers for Clean Hydrogen Production

Manufacturing Throughput	Electrolyzer Properties	Energy System Integration
Automation Increased line speed	System lifetime System performance and efficiency	Integration with clean energy sources Electricity price
quality control	Material, component, and equipment costs	Capacity factor Installation costs

\$5-\$7/kg clean H₂ scenarios* *across multiple renewable energy scenarios 2026 BIL target: \$2/kg clean H₂

Today:

2031 H2 Shot target: \$1/kg clean H₂

High-T	Electrolyzer	Technical	Targets
--------	--------------	-----------	----------------

CHARACTERISTIC	UNITS	2022 STATUS ^C	2026 TARGETS	ULTIMATE TARGETS
Stack				
Performance	A/cm ² @ 1.28 V/cell	0.6	1.2	2.0
Electrical Efficiency ^d	kWh/kg H ₂ (% LHV)	34 (98%)	34 (98%)	34 (98%)
Average Degradation Rate ^e	mV/kH (%/1,000 h)	6.4 (0.50)	3.2 (0.25)	1.6 (0.12)
Lifetime ^f	Operation h	20,000	40,000	80,000
Capital Cost ^g	\$/kW	300	125	50
System				
Electrical Efficiency	kWh/kg H ₂ (% LHV)	38 (88%)	36 (93%)	35 (95%)
Energy Efficiency ^h	kWh/kg H ₂ (% LHV)	47 (71%)	44 (76%)	42 (79%)
Uninstalled Capital Cost ^g	\$/kW	2,500	500	200
H ₂ Production Cost ⁱ	\$/kg H ₂	>4	2.00	1.00

High-T Electrolysis: Example Pathway to H2 Shot LCOH

To meet hydrogen production cost targets, need combination of high-volume manufacturing; technology advancements; and close integration of electrolyzers with low-cost, clean electricity sources

U.S. DEPARTMENT OF ENERGY

HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE

H2NEW Accomplishments

Single cell long duration testing and loss mechanism quantification

Advanced Fundamental Understanding of Iridium Dissolution Mechanisms and Impact on Cell Degradation

- Developed a comprehensive research approach involving in-cell studies, electrochemical half cells, modeling, and advanced characterization
- IrOx catalyst is least stable between 1.5 and 1.55
- In situ X-ray data shows appearance of higher corresponding to suppression of dissolution
- Step change in potential results in increased Ir dissolution compared to more gradual change (e.g., ramping) or steady state operation
- Catalyst kinetics is responsible for ~40% of the degradation rate and ~45% of Ir is lost from anode over 4,000 hr with most of it ending up as a band at the membrane surface
- Data has implications for operating strategies and mitigation approaches.

Expansion to Multi-MW Electrolyzer Stack and System Test Capabilities

Low-Temperature Electrolyzers – NREL (ELY-BIL001)	High-Temperature Electrolyzers – INL (SD1006)
 Expansion of NREL's Flatirons Campus ARIES capability to support industry 	 High Temp Test Facility (HTTF) is cornerstone of INL's Energy Technology Proving Ground
 Full system testing up to 10 MW_{AC} Parallel stack testing up to 6 MW_{BC} in aggregate for PEM 	 Full, simultaneous HTE systems testing up to 10 MW_{AC} in aggregate
 and/or alkaline stacks Grid integration with renewable energy production and 	 Simulated nuclear integration and future physical integration with microreactors
other ARIES assets	 Multiple H₂ end use test possibilities including fueling for INL coach fleet and bio-CO2 capture
in 2026!	Coming online in 2025!
OZH20 Heat Exchanger Resin Beds Pump H2/H20 DI Water Coolant Pine Pine	

Recent Stakeholder Engagement

Electrolyzer Installation Webinar

- 450 virtual attendees in September 2023
- Expert speakers from project developers, utilities, OEMs, and national laboratories
- Challenges, cost drivers, and lessons learned for large-scale electrolyzer installations identified

Electrolyzer Data Collection Effort

- Performance, reliability, operating, and installation cost data from *deployed electrolyzers*
- Data will be securely stored, aggregated, and anonymized
- Data will help refine assumptions & track progress towards \$2/kg H₂ goal

SDI015, SDO017; Wed. evening poster session

https://www.energy.gov/eere/fuelcells/electro lyzer-installation-webinar

Contact:

LTE: Sam Sprik, NREL, sam.sprik@nrel.gov

U.S. DEPARTMENT OF ENERGY

HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE

Milestones, Collaborations, Team

H₂ Production Program Highlights and Milestones Summary

FY2024	FY2025
BIL 815 & 816 FOA projects selected, and work commences	Progress towards meeting \$2/kg H ₂ target tracked including use of electrolyzer real-world data collection
Updated H ₂ Production Cost Record Posted	Recycling and Recovery Consortium launched
BIL Lab Call projects commenced	R2R CRADA projects selected and initiated
Technical Experts Meeting on "Advanced Pathways" held	Hydrogen Shot Technology Assessment on Advanced Pathways published
Hydrogen Shot Incubator Prize "Prove!" Phase winners announced	Hydrogen Shot Incubator Prize Pitch Day hosted
Roll-to-Roll Consortia launched and CRADA call released	Carbon Negative Shot BiCRS pilot project awarded
Hydrogen Shot Electrolysis Technology Assessment published	FY25 FOAs released – Topics TBD
HFTO Multi-Year Program Plan published	Commission/start operation of HTE validation center
	FY2024BIL 815 & 816 FOA projects selected, and work commencesUpdated H2 Production Cost Record PostedBIL Lab Call projects commencedTechnical Experts Meeting on "Advanced Pathways" heldHydrogen Shot Incubator Prize "Prove!" Phase winners announcedRoll-to-Roll Consortia launched and CRADA call releasedHydrogen Shot Electrolysis Technology Assessment publishedHFTO Multi-Year Program Plan published

Collaboration Network

Fostering technical excellence, economic growth and environmental justice

	DOE H ₂	Program Collabo	orations			
Efforts Support	Collaboration acro	ross H ₂ through Joint Strategy Teams (JST)		1. 1.1.1	Industry	
Over:	AMMTO MESC		BETO	Ε	naaaements	
12 national laboratories	SETO	OCED	ARPA-E		Workshops	
25 universities	SC FECM NE		Requ	Requests for Information		
35 companies	DOE C	DOE Cross-Cutting Initiatives			Benchmarking and	
	Critical	AI/ML	Clean Energy	Prot	cocol Development	
	Iviaterials		Manufacturing		H2NEW	
	Industrial Decarbonization	Carbon Negative	Long Duration		HydroGEN	
Decarbonization			Energy storage		ElectroCat	
	Hydroge	n Interagency Ta	ask Force			
	Intern	ational Collabo	rations			
	IPHE, IEA TCPs, Mission	Innovation, and other	multi-lateral agreeme	ents]	
					—	

Resources and Opportunities for Engagement

Learn more at: energy.gov/eere/fuelcells AND www.hydrogen.energy.gov

U.S. DEPARTMENT OF ENERGY

energy earthshots U.S. DEPARTMENT OF ENERGY

Hydrogen

The U.S. Department of Energy (DOE) is looking for talented, bright, early career professionals to partner with DOE Hydrogen Program Managers working to achieve the Hydrogen Energy Earthshot goal of \$1 per 1 kilogram in 1 decade ("1 1 1"). Are you graduating soon or just starting your career in hydrogen?

Do you want to help make clean hydrogen affordable for all?

The Hydrogen Shot Fellowship might be the opportunity you're looking for!

Apply today at: <u>www.zintellect.com</u> Keyword: Hydrogen Shot

The Hydrogen Production Team

David Peterson

McKenzie Hubert

James Vickers

Anne Marie Esposito **Elias Pomeroy**

Kat Rinaldi

Support Contractors

Leah Mcgovern

David Aguerrebere

Technical Project Officer

Kim Cierpik-Gold

Fellows

Thank You

Dr. David Peterson

Acting Hydrogen Production Program Manager Hydrogen and Fuel Cell Technologies Office <u>David.peterson@ee.doe.gov</u>

U.S. Department of Energy

www.energy.gov/fuelcells www.hydrogen.energy.gov

Session Preview

Hydrogen Production Presentation Schedule – May 7th and 8th

May 7th

9:00 AM	Hydrogen Production Technologies Subprogram Overview
9:30 AM	Megawatt-Scale Low Temperature Electrolyzer Research Capability
10:00 AM	High Temperature Electrolyzer Megawatt-Scale Test Facility
10:30 AM	Break
11:00 AM	
11:30 AM	HydroGEN Overview: A Consortium on Advanced Water Splitting Materials
12:00 PM	
12:30 PM	Lunch (provided)
1:45 PM	
2:15 PM	H2NEW Consortium: Hydrogen from Next-Generation of Electrolyzers of Water
2:45 PM	
3:15 PM	Break
3:45 PM	Hydrogen Production Cost and Performance Analysis / SA
4:15 PM	Benchmarking Advanced Water Splitting Technologies: Best Practices in Materials Characterization / PNNL
4:45 PM	Low-Cost Manufacturing of High Temperature Electrolysis Stacks / Nexceris
5:15 PM	BioHydrogen (BioH2) Consortium to Advance Fermentative Hydrogen Production

May 8th

9:00 AM	Scalable halide perovskite photoelectrochemical cell modules with 20% solar-to-hydrogen efficiency and 1000 hours of diurnal durability / Rice	٦		
9:30 AM	All-Perovskite Tandem Photoelectrodes for Low-Cost Solar Hydrogen Fuel Production from Water Splitting / Toledo			
10:00 AM	Gallium Nitride (GaN) Protected Tandem Photoelectrodes for High Efficiency, Low Cost, and Stable Solar Water Splitting / Michigan			550
10:30 AM	Break		-	PEC
11:00 AM	>200 cm2 Type-3 PEC Water Splitting Prototype Using Bandgap-Tunable Perovskite Tandem and Molecular- Scale Designer Coatings / Yale			
11:30 AM	Demonstration of a Robust, Compact Photoelectrochemical (PEC) Hydrogen Generator / Calthech			
12:00 PM	Semi-Monolithic Devices for Photoelectrochemical Hydrogen Production / Hawaii	J		
12:30 PM	Lunch (provided)			
1:45 PM	Non-intermittent, Solar-thermal Processing to Split Water Continuously via a Near-isothermal, Pressure-Swing Redox Cycle / CU Boulder			
2:15 PM	Accelerated Discovery and Development of Perovskites for Solar Thermochemical Chemical Hydrogen Production / CU Boulder			
2:45 PM	Ca-Ce-Ti-Mn-O-Based Perovskites for Two-Step Solar Thermochemical Hydrogen Production Cycles / Washington Univ.			(S)T(
3:15 PM	Break			(-)-
3:45 PM	Inverse Design of Perovskite Materials for Solar Thermochemical Water Splitting / ASU			
4:15 PM	Scalable Solar Fuels Production in A Reactor Train System by Thermochemical Redox Cycling of Novel Nonstoichiometric Perovskites / St. Gobain			
4:45 PM	Metal-Organic Framework-Based Heterostructure Electrocatalysts with Tailored Electron Density Distribution for Cost-Effective and Durable Fuel Cells and Electrolyzers / U Texas, El Paso			Cataly
5:15 PM	Single-Walled Carbon Nanotubes with Confined Chalcogens as the Catalysts and Electrodes for Oxygen Reduction Reaction in Fuel Cells / U. Cal Riverside			Cataly

(S)TCH

Catalysts

Hydrogen Production Poster Session – May 7th, 5:30-7:00pm

				Advanced Manufacturing Processes for Gigawatt-Scale Proton Exchange	
P148A	HydroGEN: Low Temperature Electrolysis	Shaun Alia, NREL	P197	Membrane Water Electrolyzers	Andrew Steinbach, 3M
				Enabling Low Cost PEM Electrolysis at Scale Through Optimization of Transport	
P148B	HydroGEN: High Temperature Electrolysis	Dong Ding, INL	P198	Components and Electrode Interfaces	Chris Capuano, Nel Hydrogen
P148C	HydroGEN: Photoelectrochemical (PEC) Water Splitting	Joel Ager, LBNL	P199	Integrated Membrane Anode Assembly & Scale-Up	Adam Paxson, Plug Power
				Novel Microbial Electrolysis Cell Design for Efficient Hydrogen Generation from	
P148D	HydroGEN: Solar Thermochemical Hydrogen (STCH) Water Splitting	Sean Bishop, SNL	P202	Wastewaters	Ruggero Rossi, Pennsylvania State University
				Novel Microbial Electrolysis System for Conversion of Biowastes into Low-Cost	
P148E	HydroGEN: Cross-Cut Modeling	Tadashi Ogitsu, LLNL	P203	Renewable Hydrogen	Noah Meeks, Southern Company Services, Inc.
	Thin-Film, Metal-Supported High-Performance and Durable Proton-Solid Oxide	Tianli Zhu, Raytheon Technologies Research			
P154	Electrolyzer Cell	Center	ELY-BIL002	Ultralow Iridium Catalysts with Controlled Morphology and Speciation	Jacob Spendelow, LANL
	Development of Durable Materials for Cost Effective Advanced Water Splitting			Accelerated Discovery of Metallic Pyrochlores OER Catalysts for PEM Water	
P176	Utilizing All Ceramic Solid Oxide Electrolyzer Stack Technology	Brian Oistad, Saint-Gobain	ELY-BIL003	Electrolyzers: High-Throughput Computational and Experimental Approach	Ahmed Farghaly, ANL
	Extremely Durable Concrete Using Methane Decarbonization Nanofiber Co-			Hierarchical Electrode Design for Highly Efficient and Stable Anion Exchange	
P183	Products with Hydrogen	Alan Weimer, University of Colorado, Boulder	ELY-BIL004	Membrane Water Electrolyzers	Xiong Peng, LBNL
	Scalable and Highly Efficient Microbial Electrochemical Reactor for Hydrogen			Studying-Polymers-On a-Chip (SPOC): Increased Alkaline Stability in Anion	
P184	Generation from Lignocellulosic Biomass and Waste	Hong Liu, Oregon State University	ELY-BIL005	Exchange Membranes	Johanna Schwartz, LLNL
P196a	H2NEW LTE: Durability and AST Development	Rangachary Mukundan, LBNL	ELY-BIL006	Hierarchically Structured Advanced Electrodes for Alkaline Water Electrolyzers	Jun Yang, ORNL
				Thin, Highly Selective Polymer Membrane Separators for Advanced Liquid Alkalin	e
P196b	H2NEW LTE: Benchmarking and Performance	Deborah Myers, ANL	ELY-BIL007	Water Electrolysis	Abhishek Roy, NREL
P196c	H2NEW LTE: Manufacturing, Scale-Up, and Integration	Scott Mauger, NREL	ELY-BIL008	Advanced Hydrocarbon Based Proton Exchange Membrane Water Electrolyzers	Cy Fujimoto, SNL
	H2NEW LTE: System and Techno-Economic Analysis Hydrogen from Next-			High Performance and Robust Proton Conducting Solid Oxide Electrolysis Cells	
P196d	Generation Electrolyzers	Alex Badgett, NREL	ELY-BIL009	Enabled by New Materials, Interfaces and Fabrication Methods	Dong Ding, INL
				Directed Search for Stable and Conductive Electrolytes for Next-Generation	
P196e	H2NEW HTE: Durability and AST Development	Olga Marina, PNNL	ELY-BIL010	Proton Conducting Solid Oxide Electrolysis Cells	Joel Varley, LLNL
				Stable High-Performing Oxygen Electrode for SOEC Operating at Lower	
P196f	H2NEW HTE: Cell Characterization	David Ginley, NREL	ELY-BIL011	Temperatures	Olga Marina, PNNL
				Developing High-Entropy Materials as Superior Alternative Electrodes for Long-	
P196g	H2NEW HTE: Multiscale Degradation Modeling	Brandon Wood, LLNL	ELY-BIL012	lasting Oxide-Conducting Solid Oxide Electrolysis Cells (O-SOECs)	Nicholas Strange, SLAC
P196h	H2NEW LTE: Liquid Alkaline Water Electrolysis	Meital Shviro, NREL			

Session Logistics

General Information

- This meeting is a review, not a conference
 - Questions will be taken first from reviewers, and then from other audience members as time allows
- The schedule will be strictly followed so that reviewers can move between sessions
- Presentations are 20 minutes followed by 10 minutes Q&A

Your input on our Program and subprograms helps guide our decisions.

Thank you for your thoughtful, objective, and timely feedback!

Join Our Clean Energy Workforce Today

Stop by the table outside Independence Ballroom at lunch today to learn more!

EERE is driving the clean energy revolution by funding the innovation that's building the technologies that will forever change the way energy is generated and consumed. So now is a great time to become a **Clean Energy Champion** by joining EERE today!

Together we strive to:

- > Build the clean energy economy in a way that benefits all Americans.
- Create good paying jobs for the American people.
- Overcome the technological, economic, and institutional barriers to the development of hydrogen and fuel cells.
- > Make renewable energy cost-competitive with traditional sources of energy.
- Increase access to domestic, clean transportation fuels.
- Reduce the carbon footprint of buildings.
- > And so much more.

EERE is committed to building a clean energy workforce with skilled professionals from diverse backgrounds. If interested in learning more about **becoming a Clean Energy Champion & joining the Clean Energy Revolution, stop by our booth to speak with our EERE Talent Acquisition representatives today!** EERE CAREER HOME PAGE EERE Career News Letter

