

Project ID: P148c

Photoelectrochemical (PEC) Water Splitting

Contributors: Todd Deutsch, Myles Steiner, James Young, Julia Lenef, Kiseok Oh (NREL); Joel Ager, Francesca Toma, Peng Peng, Oliva Alley (LBNL);

Tadashi Ogitsu (LLNL)

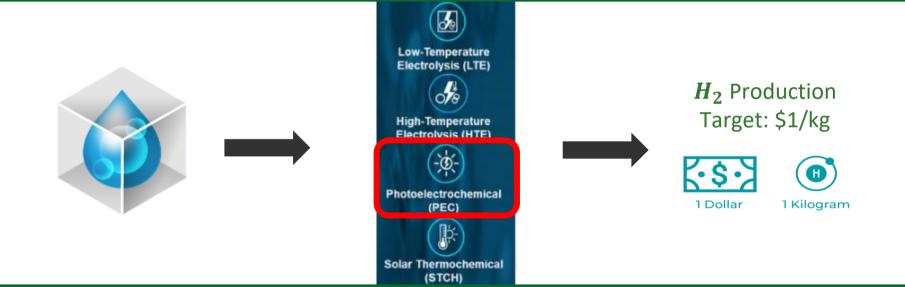
Presenter: Joel W. Ager, PEC Technology Lead, LBNL

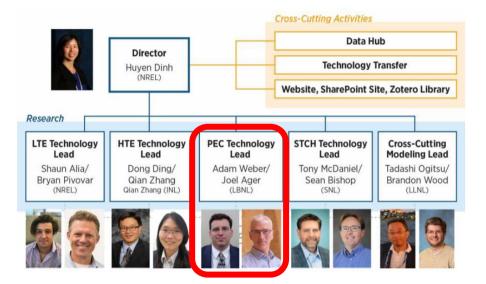
Date: May 7, 2024

DOE Hydrogen Program

2024 Annual Merit Review and Peer Evaluation Meeting

This presentation does not contain any proprietary, confidential, or otherwise restricted information




<u>Goal</u>: Accelerate foundational R&D of innovative materials for advanced water splitting (AWS) technologies to enable clean, sustainable, and low-cost (\$1/kg H₂) hydrogen production

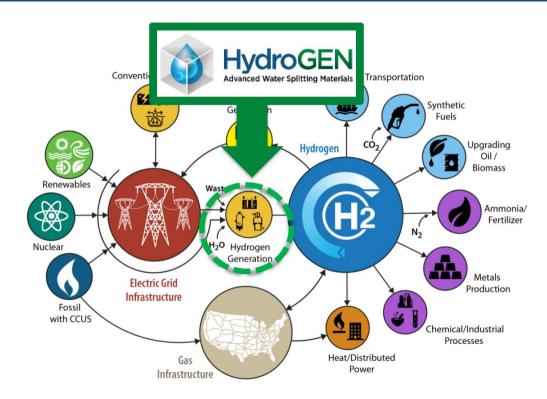
HydroGEN is focused on early-stage R&D in H₂ production and fosters cross-cutting innovation using theory-guided applied materials R&D to advance all emerging water-splitting pathways for hydrogen production

HydroGEN PEC Overview

Barriers

- Efficiency
- Durability
- Cost

National Lab PEC Team



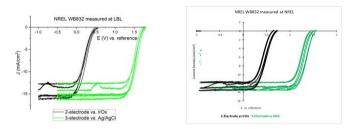
Lawrence Livermore National Laboratory

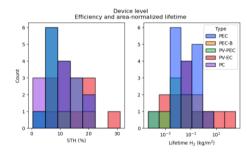
H2@Scale: Enabling Affordable, Reliable, Clean and Secure energy Relevance and Potential Impact

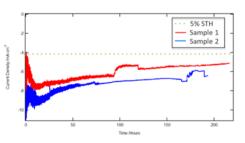
Source: DOE Hydrogen and Fuel Cell Technologies Office, https://energy.gov/eere/fuelcells/h2-scale

Transportation and Beyond

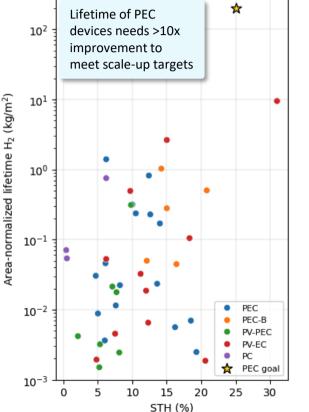
Large-scale, low-cost hydrogen from diverse domestic resources enables an economically competitive and environmentally beneficial future energy system across sectors Hydrogen can address specific applications that are hard to decarbonize Today: 10 MMT H₂ in the US Economic potential: 2x to 4x more


Materials innovations are key to enhancing performance, durability, and reduce cost of hydrogen generation, storage, distribution, and utilization technologies key to H2@Scale


"Hydrogen at Scale ($H_2@$ Scale): Key to a Clean, Economic, and Sustainable Energy System," Bryan Pivovar, Neha Rustagi, Sunita Satyapal, Electrochem. Soc. Interface Spring 2018 27(1): 47-52; doi:10.1149/2.F04181if.



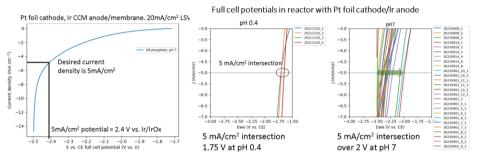
HydroGEN PEC


- Lead development of standardized PEC device measurement techniques *Improves reproducibility between labs*
- Lead the identification of device and system-level performance metrics *Clearly defines improvements needed for economic viability*
- Lead in developing reliability science needed for closing the durability gap
 New materials for durable PEC water-splitting devices
 Accelerated wear protocols to quantify progress

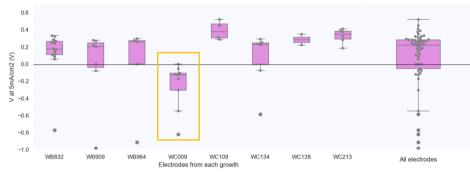
- Prioritize durability stressors and establish PEC device durability protocol
- Use density functional theory (DFT) and microkinetic modeling to describe the local environment at the electrode/electrolyte interface under operation
- Provide mechanistic understanding of PEC device degradation guided by theory and in operando characterization

Comparison of the solar to hydrogen efficiency (STH) and lifetime H_2 produced for unassisted water splitting devices. Data sourced with permission from Cheng et al. in 2022 Solar Fuels Roadmap, *J. Phys. D. Appl. Phys.* **2022**, 55 323003. PEC goal from Ben-Naim et al., *ACS Energy Lett.* **2020**, 5, 2631–2640. Data published on AWSM Data Hub.

HydroGEN: Advanced Water Splitting Materials



- LBNL has robust safety oversight through its Work Planning and Control (WPC) system
- LBNL implements continuous Feedback and Improvement through its Integrated Safety Management (ISM) plan
- Improvements specific to AWSM-funded research
 - Improved SOPs for unattended experiments, including experimenter documentation and remote camera monitoring
 - Centralized H_2 supply for B30
 - Improved connections to high-current experiments
 - Safer use of heat tapes, including GFCI protection, over-temperature shutoff, and low-voltage power supply
- Developing comprehensive questionnaire to assist PEC seedling projects with safety associated with outdoor testing (temperature control, gas handling, etc.)

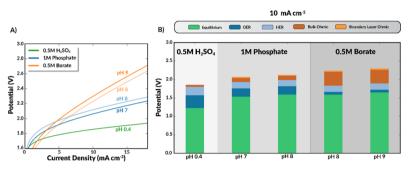


HydroGEN 2.0 PEC Accomplishment Rigorous analysis of PEC reproducibility

NREL and LBNL quantified within- vs between- growth variations for eight MOVPE photocathodes

(left) Determination of the 5mA/cm² potential from the initial LSV scan. Center: four LSV curves from measurements done in 0.5 M H_2SO_4 (pH 0.4), showing an approximate potential of -1.75 V. Right: 26 LSV curves from pH 7.0 measurements, including from long-path and short-path configurations of the reactor. Decreasing the path length and additional optimizations led to ~0.5 V decrease in the full cell potential.

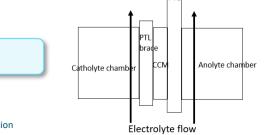
V_onset is the potential difference between working electrode (WE) and counter electrode (CE) under simulated 1 sun illumination (2 electrode measurements, 0.5 M H_2SO_4 , pH 0.4, CE is IrO_x , ca. 1 cm², WE is PEC cell, ca. 0.2 cm²). A positive value predicts that bias-free operation is possible in acid at at least 5 mA cm². 67% of the runs have a positive value and there are 5 statistical outliers.


We recommend that similar statistical methods be used for comparing the initial performance and durability of different groups of PEC devices (i.e. t-tests for pairs of conditions, ANOVA for multiple comparisons).

HydroGEN 2.0 PEC Accomplishment

NREL and LBNL defined optimal conditions for neutral pH operation

Modeling and Simulation



A) Polarization curves of the PEC cell with 0.5M H_2SO_4 (pH 0.4), 1M phosphate (pH 7 and 8), and 0.5 M borate (pH 8 and 9) electrolytes. B) Breakdown of contributions to voltage at average HER current density for all the electrolytes tested at electrolyte flow rate. 0.5 M H_2SO_4 exhibits the lowest ohmic losses, but large kinetic losses. 0.5 M Borate at pH 8 has the highest ohmic losses, but the lowest kinetic potential losses.

-3.0-3.5 -3.5D) C) pH 0.4 -4.0-4.0pH 7 (m4.5 -5.0 (m4/cm2) (m4/cm2) (m4/cm2) (m4/cm2) -4.5 -4.55 mA/cm² intersection (mA/cm2) -5.0-5.5-6.0-6.0-6.5 -6.5-7.0-7.0-3.00 -2.75 -2.50 -2.25 -2.00 -1.75 -3.00 -2.75 -2.50 -2.25 -2.00 -1.75 -1.50 Ewe (V vs. CE) Ewe (V vs. CE)

Experiment

C) Cells operating in acid require a full cell voltage <2 V, which is lower than the expected output of employed tandem solar cells. D) Use of catalyst-coupled membrane (CCM, schematic below) reduces required potential for 5 mA cm⁻² operation to close to 2 V in neutral pH.

Neutral pH operation below 2 V is possible if ohmic losses are reduced

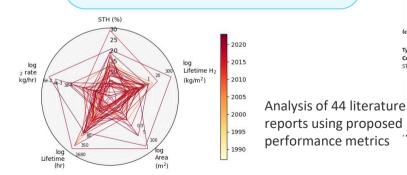
HydroGEN 2.0 PEC Accomplishment

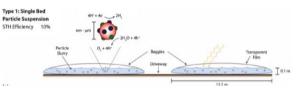
Proposed device and system-level performance metrics

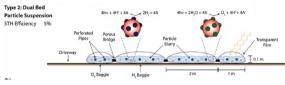
Device-level metrics

- Solar to hydrogen conversion efficiency STH (%)
- Area-normalized lifetime production of H₂ kg/m²

normalized to PV area for concentrators


System-level metrics


- Area m² receiver area for concentrators
- Lifetime


hours

as reported by source

 System H₂ production rate kg/hr

Type 3: Fixed

Type 4: Tracking

Concentrator Array

STH Efficiency 15%

STH Efficiency 109

Panel Array

Plastic Case Uter Crocke Distribution Di

Parabolic Q/sinder Reflector (101 Solar Concentration)

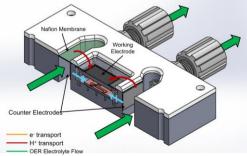
Parkinson. B. Acc. Chem. Res. 1984. 17. 431–437

James et al., DOE Rep. 2009.

Pinaud et al, Energy Env. Sci. 2013.

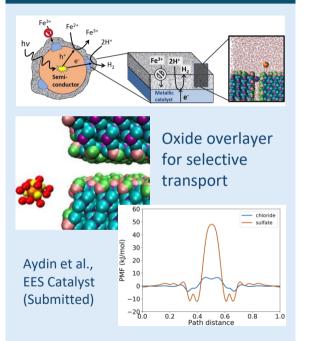
Ager, J. W.; Shaner, M. R.; Walczak, K. A.; Sharp, I. D.; Ardo, S. *Energy Environ. Sci.* 2015

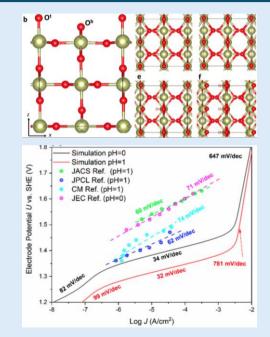
Ben-Naim, M.; Britto, R. J.; Aldridge, C. W.; Mow, R.; Steiner, M. A.; Nielander, A. C.; King, L. A.; Friedman, D. J.; Deutsch, T. G.; Young, J. L.; Jaramillo, T. F. *ACS Energy Lett.* **2020**,


Cheng, W.-H., Deutsch, T. G., Xiang, X. in 2022 Solar Fuels Roadmap, J. Phys. D. Appl. Phys. 2022

Holmes-Gentle, I.; Tembhurne, S.; Suter, C.; Haussener, S. Nat. Energy 2023

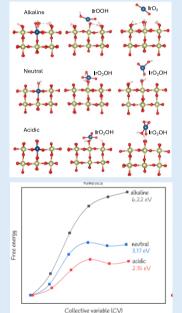
- Led a breakout session at the September AWSM benchmarking workshop that focused on
 - NREL's experience and challenges with outdoor photoreactor testing
 - Synergies among the six new awarded PEC seedling projects
- Developed comprehensive questionnaire to assist PEC seedling projects with photoreactor setup, evaluation of device performance, and logistical considerations
 - All seedling projects will be performing on-sun testing at NREL for 2 weeks
 - Seedling final deliverable should produce 0.1 g H_2/h (approximately 200 cm²)
 - Testbed will be instrumented to monitor and record solar-to-hydrogen efficiency
- Provided seedlings materials as well as characterization support and contributed to publications
 - Rutgers: "TiO₂/TiN bifunctional interface enables integration of Ni₅P₄ electro-catalyst with III-V tandem photoabsorber for stable solar-driven water splitting" Hwang...Dismukes et al., ACS Energy Lett. 2024, 9, 789–797.
- Rice: "Technoeconomic model and pathway to <\$2/kg green hydrogen using integrated halide perovskite photoelectrochemical cells" Fehr...Mohite et al., ACS Energy Lett. 2023, 8, 4976–4983.
 HydroGEN: Advanced Water Splitting Materials
 This presentation does not contain any proprietary, confidential, or otherwise restricted information




Cross-cut accomplishments in low-temperature technologies (PEC/LTE) Atomistic insights into transport, OER activities, stability

PEC: Selective Transport

Optimize porosity and chemistry to enhance hydrogen production


PEC: OER Activity

Developed models for predicting catalytic activities

Zhou et al., ACS Appl. Energy. Mater (2023)

LTE: Catalyst Stability

Dissolution pathways of Ir at different pH conditions

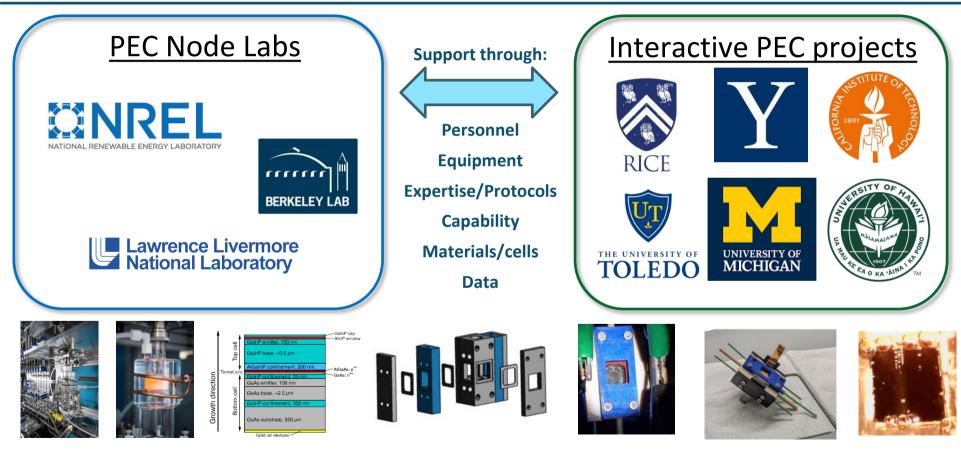
pH-dependence dissolution kinetics

Explore impacts of morphology and environment on stability

Zagalskaya et al., (in preparation)

HydroGEN: Advanced Water Splitting Materials

This presentation does not contain any proprietary, confidential, or otherwise restricted information


- The focus on standards development and benchmarking is fantastic to see, and the team is encouraged to consider how to do more of this.
 - We are continuing to lead in this area, including leading a dedicated session at the upcoming Benchmarking Meeting
 - HydroGEN PEC team has joined IEA Hydrogen TCP Task 45 Renewable hydrogen Subtask 2 PEC and will work to define standards worldwide
- The techno-economic analysis (TEA) seems to be used a little inconsistently in the seedlings (though only the PEC seedlings were reviewed)
 - We are leading the development of performance metrics and consistent TEA methodologies which will address this concern.
- Regarding PEC, the project has made significant progress in terms of demonstrating high solar-to-hydrogen (>17%), durability, as well as prototyping that represents a notable step forward in terms of TRL for this class of technology.
 - We agree that improvements in durability are the key to advancing the TR level

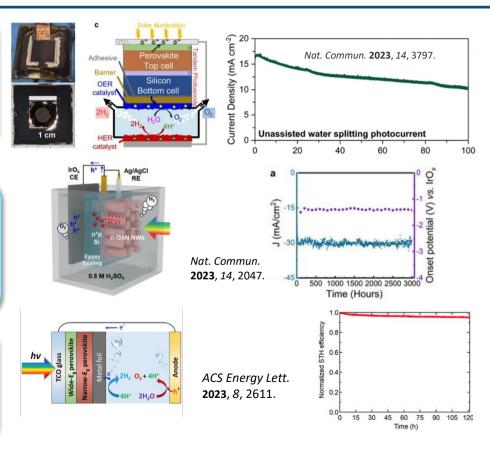
- The PEC branch is the most challenging in terms of seeing a potential impact, as a realistic chance of success is hard to see
 - Our initial analysis of performance metrics has highlighted recent progress in this area, including large area (100 m²) and durable (months) demonstrations. We also note several start-up companies (all in Europe) in the PEC H₂ space.
- A focused research on degradation mechanisms is suggested. Degradation mechanisms studies should be planned. The project should give greater emphasis on TEA/performance metrics
 - We intend to continue the focus on durability, sharing best practices and methods with the LTE team who have a similar focus.

HydroGEN STCH Seedling Projects & Lab Collaboration

This presentation does not contain any proprietary, confidential, or otherwise restricted information

HydroGEN PEC Seedling Accomplishments: 3 continuing projects

P216: Aditya D. Mohite, Rice University **LBNL and NREL** worked with **Rice University** to characterize halide perovskite photoelectrodes coated with catalysts and a hydrophobic graphene-based barrier which ensures optimal charge transfer at the light absorber/catalyst interface.


>100 hours stability with peak efficiency >20% STH.

P209: Zetian Mi, University of Michigan **LBNL and NREL** worked with **the University of Michigan** to demonstrate stable operation of a photocathode comprising Si and GaN, the two most produced semiconductors in the world

• Operation for 3,000 h without any performance degradation in two-electrode configurations.

P218: Yanfa Yan, University of Toledo **NREL** worked with the **University of Toledo** (Yanfa Yan) to monolithically integrate all-perovskite tandem photocathodes for unassisted solar water splitting with 15% STH.

Continuous operation in water for >120 h at 1 sun

P213 Shu Hu, Yale University

>200 cm² Type-3 PEC Water Splitting Prototype Using Bandgap-Tunable Perovskite Tandem and Molecular-Scale Designer Coatings

Node support: NREL and LBNL

<u>P214</u> Joel Haber, Caltech

Demonstration of a Robust, Compact Photoelectrochemical (PEC) Hydrogen Generator

Node support: NREL and LBNL

<u>P215</u>

Nicolas Gaillard, University of Hawaii

Semi-Monolithic Devices for Photoelectrochemical Hydrogen Production

Node support: NREL and LLNL

PEC Lab R&D work

- End of FY2024 goal: Stand-alone solar water splitting device of at least 4 cm² illuminated area capable of indoor and outdoor operation with neutral (pH ~ 7) water
- End of project goal in FY2026: Photoreactor capable of indoor or outdoor operation accommodating illuminated areas of up to 200 cm². Reactor will be instrumented to measure the H₂ generation rate and, optionally, to accommodate diagnostic tests meant to assess and predict durability
- Leadership in PEC community: develop and publicize device and system-level performance metrics required for PEC water splitting to meet DOE cost targets

PEC Lab support of seedlings

• Provide platform for verifying performance of prototype devices from seedling projects

Any proposed future work is subject to change based on funding level

HydroGEN 2.0 PEC: Summary

- Used previously developed protocols for robust benchmarking and statistical analysis of stand-alone PEC water-splitting devices (NREL/LBNL)
- Developed initial set of performance metrics for PEC devices and systems (LBNL/NREL/LLNL)
- Demonstrated bias-free water splitting with a III-V photocathode at over 5% STH efficiency for more than 200 hours at neutral pH (NREL/LBNL)
- Demonstrated bias-free water splitting at 20.8% STH efficiency with a perovskite/silicon tandem photoanode, with a 100+ hour lifetime (Rice/NREL/LBNL)
- Demonstrated Si/GaN photocathode with 3000+ hours stability (U. Michigan/NREL)
- Demonstrated bias-free water splitting in acid at 18% STH efficiency with an allperovskite tandem photoelectrode, with a 120+ hour lifetime (U Toledo/NREL)
- 7 publications