

Thin-Film, Metal-Supported High-Performance and Durable Proton-Solid Oxide Electrolyzer Cell

Dr. Tianli Zhu

Project ID # p154

RTX Technology Research Center

EE0008080

May, 2024

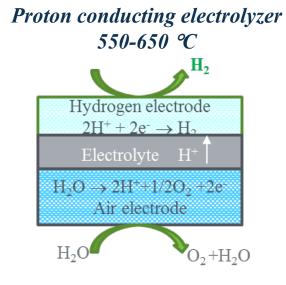
DOE Hydrogen Program 2023 Annual Merit Review and Peer Evaluation Meeting

This presentation does not contain any proprietary, confidential, or otherwise restricted information

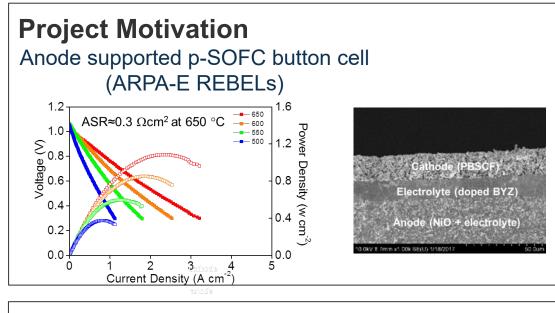
Project Partners

Tianli Zhu, Raytheon Technologies Research Center Partner organizations: ElectroChem Ventures, UCONN

Project Vision


Develop a highly efficient and cost competitive high temperature electrolysis for H_2 generation, by a thin- film, high efficiency and durable metal-supported solid oxide electrolysis cell (SOEC) based on proton-conducting electrolyte at targeted operating temperatures of 550-650 °C.

Project Impact


Accelerate the commercialization of high-temperature electrolysis, and advance reversible-SOFC technology for renewable-energy applications.

* this amount does not cover support for HydroGEN resources leveraged by the project (which is provided separately by DOE)

Award #	EE0008080
Start/End Date	10/1/2017- 3/30/2025
Project Funding*	\$1.25M

Barriers

-. Low cost deposition of ceramic layers:

Deposition process without high T sintering: RSDT, SPS, LBNL co-sintering/metal infiltration

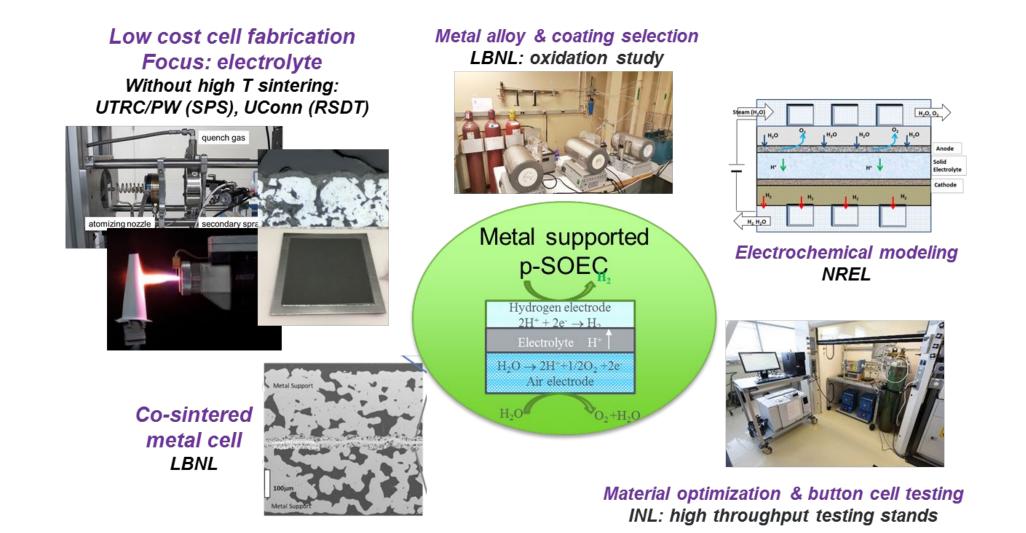
-. Metal alloy durability

Proper selection of metal alloys and protective coatings through durability tests

-. Steam electrode and electrolyte stability

INL's high-throughput methodology; molecular dynamics modeling

Key Impact


Metric	State of the Art	Proposed
SOEC Performance	1 A/cm ² at 1.4 V at 800 °C	\geq 1 A/cm ² at 1.4 V at 650 °C
SOEC Durability	(1-4)% per 1000 h	<0.4% per 1000 h (~4 mV per 1000 h)
H ₂ production Cost	>\$4/kg H ₂	\$2/kg H ₂

Partnerships

- University of Connecticut (Prof. Radenka Maric): Cell Fabrication (RSDT) – finished in BP1
- UTRC SPS Vendor/PW: Suspension Plasma Spray (SPS)
- ElectroChem Ventures (consultant): Metalsupported cell design
- EMS nodes: LBNL, INL & NREL

Approach-Innovation: Integrating Manufacturing, Material & Modeling

Approach – Safety Planning and Culture

Safety Plan

- Required: Yes
- Comments were addressed with the HSP

Prioritizes safety and analyzes safety hazards

- **Risk Mitigation Plan according to** RTRC's Flammable Gas Standard:
 - Automated and manual shutoff, flow restrictors to limit flow
 - Minimize fittings in non-ventilated spaces, compression fittings are used for connections, tubing secured to solid surfaces.
 - Adequate ventilation in both storage and testing rig
 - Gas sensors are coupled to normally closed solenoid valves via a PLC.
- Risk assessment of the lab & the rig process
- Standard operating procedures
- Training and equipment maintenance

Incidents/near-misses and learning

- Track Record on Safety
 - Fuel cell research has been conducted at RTRC for > 20 years without any serious safety incidents.
- Well established incident reporting and Investigation
 - All emergency situations must be reported by dialing extension 7777 on RTRC phones (860-610-7777 from a cell phone). This will result in RTRC Security dispatching the appropriate responders to the event.
 - RTRC also encourages the reporting of "near misses," and RTRC has an on-line "Near Miss Notification" reporting tool for this purpose.
- Centralized and dedicated internal website to EH&S matters

Potential Impact

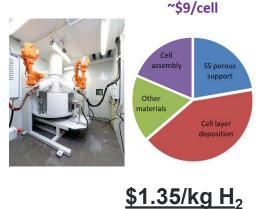
Project Objectives

Develop highly efficient and cost competitive high temperature electrolysis for H₂ generation, by a high efficiency and durable metal-supported solid oxide electrolysis cell (SOEC) based on proton-conducting electrolyte at targeted operating temperatures of 550-650°C. Focus on developing a low cost, scalable fabrication of metal-supported cells and further material optimization for an efficient & durable p-SOEC.

Project Impact

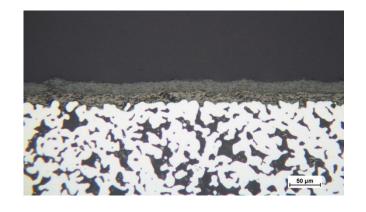
Enable <\$2/kg H₂ production through high temperature steam electrolysis and advanced manufacturing

Metric	State of the Art	Project Target
SOEC Performance	1 A/cm ² at 1.4 V at 800 °C on o- SOEC	≥0.9 A/cm ² at 1.4 V on button cells at T ≤ 650 °C (demonstrated in BP1); Metal cell fabrication process feasibility demonstration, ≥0.9 OCV and ≥0.1 A/cm ² at 1.4 V on metal-supported cells at T ≤ 650 °C (BP2)
SOEC Durability	(1-4)% per 1000 h	<1% per 1000 h (<10 mV per 1000 h)
H ₂ production Cost	>\$4/kg H ₂	<\$2/kg H ₂ based on cost analysis in BP 1

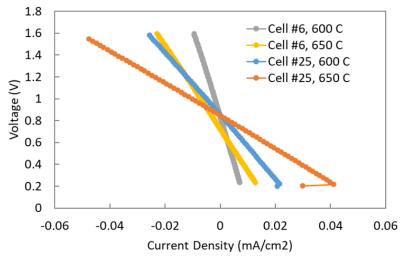


Low cost fabrication

- Commercially available process
- Fast and scalable process
- Potentially eliminate sintering process


Low cost cell fabrication

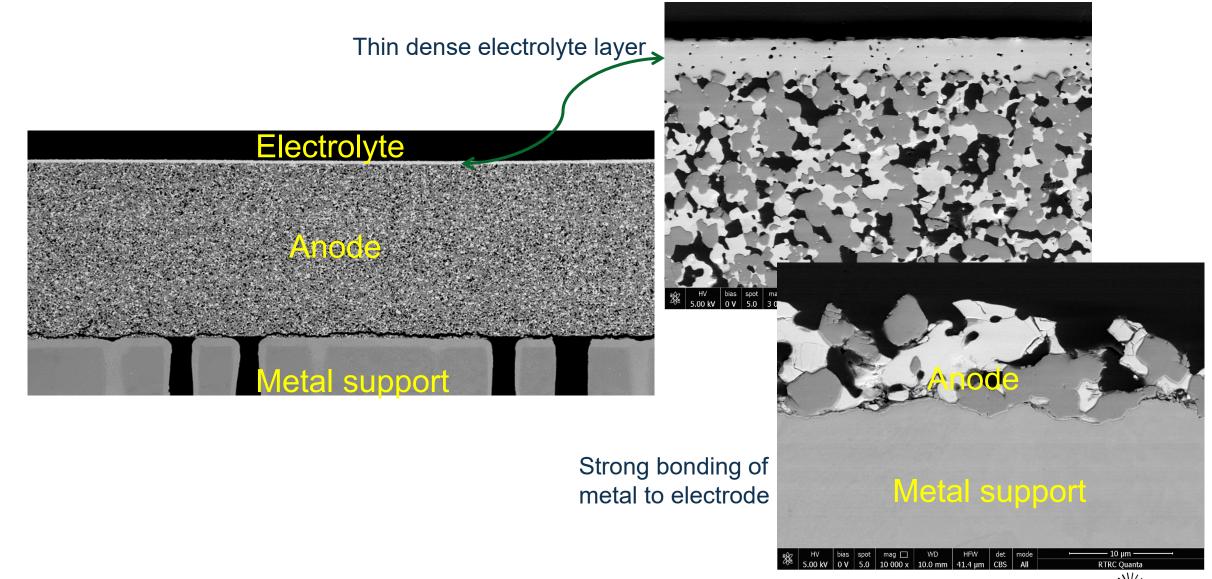
(DOE Target \$2/kg)

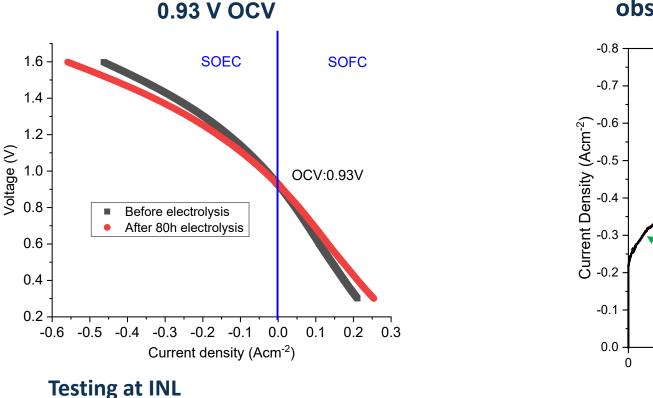

Enable metal-supported cells

- Capable of bridging large surface pores -- demonstrated
- No high T sintering -- demonstrated
- Capable of depositing porous or dense layers -- demonstrated

Remaining Challenges

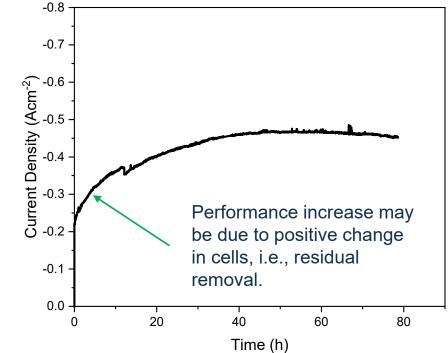
- BaZrO3-based p-electrolyte poses special challenge, resulted in low performance
 - Ba evaporation
 - Balancing composition & density


RTRC to focus on alternative scalable fabrication process, with low-cost potential, in remainder of BP2



- Demonstrating the feasibility of metal-supported SOEC cell fabrication
- The cell performance for water electrolysis shall be demonstrated through metal-supported button cell testing. At the end of BP2, the p-SOEC metal cell shall demonstrate ≥ 0.9 OCV and >0.1 A/cm² at 1.4 V. ---- BP2 GO/NO GO

Accomplishment: Demonstrated Metal Button Cell Fabrication



Cell #7: 0.24 A/cm² at 1.3V at 600 °C

No significant degradation was observed after 80h at 1.3V

Cell size: $\Phi 1''$ with active area of 0.73 cm² Temperature: 600°C Atmosphere: 40ml/min H₂ + 70ml/min O₂ & 30ml/min H₂O (30% Steam)

Accomplishment: Additional Metal-Supported Cell performance

FE is ~5-10% less than corresponding

ceramic cell at same voltage, may be

due to the use of pure O2

Consistent cell performance

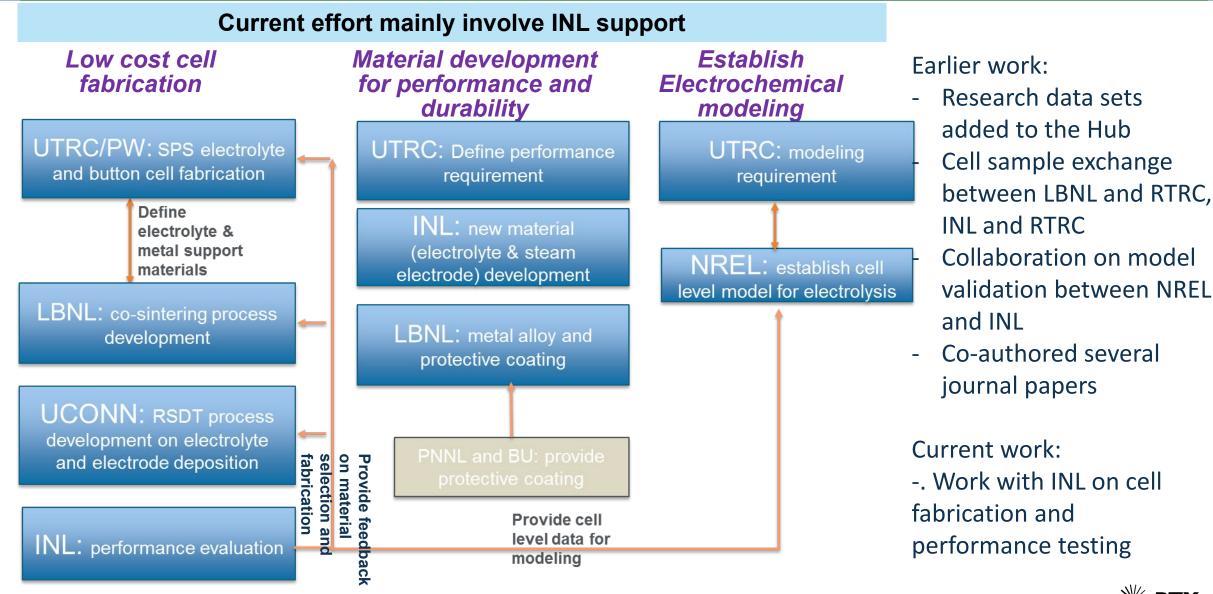
Cell #11: 0.20 A/cm² at 1.3V at 600 ° C 1.0 V OCV

Testing at INL

Cell size: $\Phi 1''$ with active area of 0.73 cm² Temperature: 600°C Atmosphere: 40ml/min H + 70ml/min O & 30ml/m

Atmosphere: 40 ml/min H₂ + 70 ml/min O₂ & 30 ml/min H₂O (30% Steam)

Accomplishments and Progress:


Responses to Previous Year Reviewers' Comments

This project has not been previously reviewed

Collaboration: Effectiveness

HydroGEN: Advanced Water Splitting Materials

Proposed Future Work

BP3 (2024):

Focus on consistent and durable performance of metal cells

- Metal cell fabrication process optimization for improved performance
- Metal cell performance demonstration, focus on performance repeatability and short-term durability

