

Project ID #P176

Development of Durable Materials for Cost Effective AWS Utilizing All-Ceramic Solid Oxide Electrolyzer Stack Technology

John Pietras (PI) Brian Oistad (Presenter)

Saint-Gobain

DE-EE0008377

May 7, 2024

Project Partners Dr. Srikanth Gopalan, Boston University Dr. Olga Marina, PNNL

DOE Hydrogen Program 2024 Annual Merit Review and Peer Evaluation Meeting

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Partners

Dr. John Pietras, Saint-Gobain Dr. Srikanth Gopalan, Boston University Dr. Olga Marina, PNNL

Project Vision

Novel chemistries of nickelate-based materials showing enhanced oxygen hyperstoichiometry are being developed to solve the issue of air electrode delamination during SOEC operation

Project Impact

The steady state degradation rate of SOEC stacks will be improved by solving the issue of electrode delamination. The materials developed will be compatible with the highly stable (0.2%/khr degradation rate) co-sintered SOFC stack architecture and result in a cost effective H₂ production platform

Award #	FE0008377
	LL0008377
Start/End	10/01/2018 -
Date	12/31/2024
Project	\$1.2M

-unding*

* this amount does not cover support for HydroGEN resources leveraged by the project (which is provided separately by DOE) HydroGEN: Advanced Water Splitting Materials

Project Motivation

Novel chemistries of nickelate-based materials showing **enhanced oxygen hyper-stoichiometry** are being developed to solve the issue of air electrode delamination during SOEC operation

Barriers

Phase stability/performance (Boston University)

Identification of phase stability boundaries with target electrochemical properties

Co-sintering (Saint-Gobain)

Incorporate materials within stacks ensuring porosity, activity, defect free microstructure. Alter stoichiometry to prevent interfacial reactions.

Accelerated testing (PNNL)

Development of a protocol which probes the dominant degradation mechanism

Key ImpactMetricState of the ArtExpected AdvanceASR0.3-0.5 ohm cm^2 ≤ 0.3 ohm cm^2 Current
Density $0.5 A/cm^2$ $\geq 1 A/cm^2 @ 1.4V$ Degradation
Rate1-4 %/khr ≤ 0.3 %/khr

Partnerships

Saint-Gobain provides an expertise in materials development and extensive US manufacturing footprint. Has developed an extremely stable all-ceramic, co-fired SOFC solution with a degradation rate of 0.2%/khr

Boston University has demonstrated stable nickelate chemistries and draws on expertise in advancing the chemistry of electrochemical devices

PNNL has developed in-situ characterization capabilities to monitor cells and electrochemical interfaces along with expertise in design and interpretation of acceleration testing

- There were no incidents or near misses experienced throughout the duration of this project.
 - All relevant personnel were instructed on safe operation of sintering furnaces, as well as the hazards associated with the material chemistries being evaluated.
- Safety was ensured via best practices in material handling, synthesis, and usage.
 - Specialized waste streams were established for nickel-containing or contaminated materials
 - These waste streams are separate of those of other chemistries. This applied to powders and slurries.
- Aqueous ceramic slurry systems were selected to reduce the HSE impact of working with solvent-based systems.

*Safety plan exempted project

Summary of Approach & Results

HydroGEN: Advanced Water Splitting Materials

Button cell performance metrics with Nickelate oxygen electrode

- 25% higher electrolyzer current density @ 1.4V than LSM-YSZ (+70%)
- Nickelate electrode well-adhered after a 336 h of continuous operation (stable operation)
- Degradation rate <1.5%/1000 h (performance becoming steadier over time up to 2000 hrs)
 - Degradation mechanisms proposed were out of BP1 scope
 - Contact resistance at cell surface (evidence on at least one cell by disturbing the wires)
 - Contact resistance at Electrode / Bulk electrode interface (potential reactions with LSM)
 - Contact resistance developed between ceria barrier layer and zirconia electrolyte
 - Changes on the Ni/YSZ side of the cell

Major Milestone	Description	Metric	Status
M1.1	Powders meet specifications	 Stoichiometry met (ICP) Phase purity (XRD) 	• 100%
M1.2	Identification of stability boundaries	Decomposition free regions determined for nickelate-ceria mixtures	• 100%
M1.3	Determine top 3 composites	 >96 S/cm @800C, oxygen exchange coefficient 1.2x10⁻⁵ cm/s Maps of oxygen nonstoichiometry f(T, PO2) 	• 100%
M2.1	Button cell fabrication	Button cells co-sintered and microstructure acceptable	• 100%
M2.2	Accelerated testing	 Baseline degradation rate established in accelerated testing Degradation mode identified microstructurally 	• 100%
G/NG	Button cell test results operating in electrolysis conditions	 25% higher electrolyzer current density @ 1.4V than baseline well adhered layers after 2 wks of operation Degradation rate <1.5%/1000 hr 	• 100%

Stability Map

Phase Stability Example

- Synthesis of Neodymium Nickelate (Nd₂NiO₄) and Neodymium Doped Ceria (NDC) by solid state reactions
- 10-50 mol% neodymium was doped into the ceria
- XRD of the NDC powders confirms the fluorite crystal structure even in highly doped ceria
- Peak shift indicates the increase of the lattice parameter with increasing dopant concentration
- Replacement of smaller Ce⁴⁺ ions with the larger Nd³⁺ ions (the ionic radii of 0.97 and 1.1053 Å respectively) leads to lattice expansion.
- Constant lattice parameter of ceria at high initial dopant levels indicates lack of reaction with nickelate

Phase Retention

Phase Purity

Lattice Parameter Shift

Stability Map

35

Lanthanum Dopant Mol Fraction in Ceria (mol%)

▲ 80:20 LDC:LNO

50:50 LDC:LNO

Single Phase LDC

45

55

Ceria Phase Lattice Parameter

5.575

€ 5.550

under 5.525

5.500

5.475

5.450

15

25

Exchange coefficient targets met

- Conductivity relaxation study completed for LNO & NNO @ 800 °C
- Materials show promising surface exchange activity

Oxygen uptake verified

- Weight as a function of partial pressure of O₂ measured
- Nickelate materials show greater affinity for oxygen than LSM

Durability established

 Multiple LNO button cells operated for over 2000 hours with little change in electrode resistance or OCV

	Exchange coe	efficient (m/s)
	1-10%	10-1%
LNO	1.40x10 ⁻⁶	5.66x10 ⁻⁷
NNO	1.59x10 ⁻⁶	6.19x10 ⁻⁷

National Laboratories

Budget Period 2

Budget Period 2

- Button cell fabrication and testing of top candidates identified in BP1
- Investigate cross-family stability and performance
- Additional focus on potential interfacial reactions
 - Detailed interface reactions to be identified at SNL/PNNL
- Optimization of stoichiometry and sintering to maximize performance and minimize degradation
- Down selection of electrode compositions for integration into short stacks
 - Initial short stack performance and durability testing at INL

Major Milestone	Description	Metric	Status
M3.1 M5.2	Button cell electrochemical performance	 Materials demonstrating >1.5A/cm2 @ 1.3V , 800C Materials demonstrating >1.4A/cm2 @ 1.3V and deg <1%/khr , 800C 	• 100%
M4.1	Barrier layer deposition technique	 Uniform barrier layer <5 μm Well adhered interfaces 	• 100%
M4.2 M6.1	Short stack results	 Scale process to 8x8 cm, 4 cell stack Demonstrate performance of short stack >1 A/cm2 @ 1.3V, 800C 	• 90%

Material Improvement

- B-site substitution increases oxygen hyper-stoichiometry and conductivity at small doping level (~ 5 mol%)
- Cells prepared and in testing

Cell Improvement

- Oxygen electrode layer thicknesses and architecture optimized on symmetric cells
- Optimized structure utilized in full cells
- 65% performance improvement over baseline cell performance

Interfacial Stability Study

- Initial EDS scans show interdiffusion between barrier layer and electrolyte
- This result kicked off detailed study on layer-to-layer interactions

Interfacial Reactions

- LNO is stable by itself at 1300C;
- LNO is compatible with LDC at 1300C;

3. Barrier Layer/YSZ

- Surveyed various combinations of barrier layers with YSZ electrolyte
- Identified instable combinations which lead to excessive diffusion

2. OFL/Barrier Layer

LNO/LDC 1300C 2h (D8740) PDF 04-024-6825 La2NiO4.14 Nickel Lanthanum Oxide PDF 04-022-5571 La0.4Ce0.6O1.8 Cerium Lanthanum Oxide

- Surveyed various combinations of oxygen functional layers with different barrier layers
- Identified instable combinations which lead to secondary phase formation

Implementation of Stable Interfaces

Simultaneous Multilayer Coating Development

|--|

Development Results

- Modification of slurry properties
- Very thin barrier layer possible
- Elimination of punching, stacking, lamination
- Sharp interfaces maintained
- Improved interface integrity

Successful Simultaneous Casting

Trial results – excellent control of film homogeneity and microstructure

- Stable coating good separation of 3 layers, smooth coating
- Confirmation of fluid handling approach and workflow strategy
- Layer thickness & architecture were on target
- High quality interfaces and degree of uniformity

Stack Testing at Idaho National Labs

- Stack testing equipment including a furnace, electrochemical testing equipment, and fixtures shipped and installed at Idaho National Labs
- A baseline 4-cell short stack prepared and tested at INL
- Excellent lab-to-lab reproducibility in performance in SOFC mode
- Modifications to test stand ongoing to enable SOEC testing
- Materials recently tested at the button cell level will be scaled to the short stack which will be subsequently shipped to INL for evaluation

Manifolded Stack

Installed Equipment

Test Data

Any proposed future work is subject to change based on funding levels

daho National Laborat

Optimization of Air Electrode Microstructure

Microstructure Optimization of Nickelate Air Electrode

Process LNO, LDC, NNO, NDC powders by milling to create a set of microstructure combinations and down-select the optimal be symmetric cell screening

- Synthesis of LNO, LDC, NNO and NDC at SG
 - Single phase confirmed for all compositions
- LNO and LDC powders were processed for particle size, 21 LNO+LDC combinations created in symmetric cells;
- **NNO** and **NDC** powders were processed for particle size, 21 NNO+NDC combinations created in symmetric cells;
- Tests completed, clear impact of microstructure on Rp;

Optimization of Air Electrode Microstructure – EIS

HydroGEN: Advanced Water Splitting Materials

Button Cells Testing for Determining Barrier Layer

All cell components are identical except barrier layer and oxygen functional layer.

Bi-layer barrier layers:

- 1. SDC20+NDC50 (with NiO)
- 2. GDC10+NDC50 (with NiO)

Oxygen Electrode:

- 1. LNO+LDC50 (microstructure unoptimized)
- 2. NNO+NDC50 (microstructure unoptimized)

The results above are being used to prepare optimized cells for the final round of testing

Publications & Future Work

- J. Banner, A. Akter, R. Wang, J. Pietras, S. Sulekar, O.A. Marina, and S. Gopalan, "Rare earth nickelate electrodes containing heavily doped ceria for reversible solid oxide fuel cells", J. Power Sources 507 (2021) 230248
- 2) A. Akter, J. Pietras, and S. Gopalan, "Heavily neodymium doped ceria as an effective barrier layer in solid oxide electrochemical cells", Int. J. Hydrogen Energy

Next steps

- Investigate microstructural changes occurring during operation
- Determine operational and microstructural improvements to reduce degradation rate
- Deliver a short stack containing the optimized microstructure for electrochemical testing.

Final project targets

- Demonstrate a cell operating at >1.5A/cm2 @ 1.3V, <0.75 %/1000 hr post break-in
- Demonstrate a short stack at >1.2 A/cm2 @1.3V, <1%/ 1000 hr

Project Summary

The project is progressing well along the milestones for budget period 3 and is on track to reach the program goals.

Key Achievements

- Microstructure optimized for electrode supported button cells surpassing year 3 goals
- Uniform 5 μ m barrier layer production demonstrated to be reproducible and scalable.
- Sintering kinetics modified to produce dense barrier layer during co-sintering
- No cracking due to thermal expansion mismatch has been found
- An optimal oxygen functional layer PSD (microstructure) has been identified to minimize R_p

On-going Efforts

- Stability characterization and optimization is ongoing
 - Stability during co-sintering at electrolyte-barrier layer interface
 - Stability during operation within air electrode
- Scaling to short stack underway
- B-site doping to improve performance is ongoing

Acknowledgements

- INL: D. Ding, J. O'Brien, J. Gomez
- SNL: E. Coker, J. Sugar
- BU: J. Banner, A. Aktar
- **SG**: S. Soulekar, R. Wang, B. Oistad, X. Qian, G. Vincentelli, I. Jones, M. Sugimoto
- **EERE**: Dave Peterson, William Gibbons