DE-EE0008846

Project ID# P183

05/08/24

Extremely Durable Concrete using Methane Decarbonization Nanofiber Co-products with Hydrogen

This presentation does not contain any proprietary, confidential, or otherwise restricted information

PI: Alan W. Weimer – University of Colorado, Boulder

Co-PI: Mija Hubler – University of Colorado, Boulder

Staff: Jessica Hauck, Kent Warren, Samantha Harshberger, Boning Wang, Bola

Odunaro – University of Colorado, Boulder

Andrew Broerman, Christopher Gump, Caitlin Czernik – Forge Nano

Colin Lobo – NRMCA

DOE Hydrogen Program 2024 Annual Merit Review and Peer Evaluation Meeting

University of Colorado Boulder

Develop a scalable low-cost chemical vapor deposition (CVD) process to produce carbon nanofibers (CNFs) and H_2 from CH_4 using a sacrificial ALD catalyst deposited on a fumed silica substrate. A minimum 10% Investors Rate of Return (IRR) for a process selling CNFs at an acceptable identified cost while selling H_2 for < \$2/kg.

Develop extremely durable concrete (High performance concrete) by adding the co-product carbon nanofibers (CNFs). The 28-day compressive strength should be at least 8000 psi. Comparing with the mix design which has no CNFs, the ductility should be improved at least 25%, and the chloride permeability should be 25% lower.

Overview: Year 3 of 3-Year Project

Timeline

Project Start Date: 5/1/2020

Project End Date: 10/31/2024

% Complete: 90%

Budget

Total project funding: \$1,250,000 Sub-contract: \$125,000 Total recipient cost share: \$250,000 Total DOE funds received to date: \$1,000,000

Collaborators

<u>ForgeNano</u>

- Thornton, CO
- Reactor/process design and technoeconomic analysis
 <u>National Ready Mixed Concrete</u>

Association (NRMCA),

- Alexandria, VA
- Concrete materials, mix design, and consulting

Potential impact: Hydrogen generation from decarbonization of methane

Large-scale H₂ production

- Potential to displace U.S. H₂ production by steam methane reforming (SMR) with a low-cost and scalable CVD process
- Unlike SMR, no CO₂ is produced directly from CVD of CH₄
- CH₄ is the main component of natural gas, an abundant energy resource
- The value-added CNF product 'sequesters' carbon from CH₄ as a solid

CNFs for high performance concrete

- CNFs: instead of separating CNFs from catalyst/fumed silica, use combined product as a crack-bridging additive in concrete
- Silica is already added to concrete to improve its properties
- Cement production accounts for 8% of global CO₂ emissions¹
- Increasing the service life of concrete structures using optimized mixtures using a more economical CNF product

Approach: Particle ALD/CVD catalysis system

- Use transition metal catalysts on a fumed silica support to grow CNFs
- Catalyst will be produced using particle atomic layer deposition (ALD) in a fluidized bed reactor
- Catalyst will **not** be separated from CNFs (sacrificial)
- CNF product will be used as a crackbridging additive in high-performance concrete

Catalyst Metal	Catalyst Support	ALD Chemistry
Iron	Fumed silica	Ferrocene/H ₂
Nickel	Fumed silica	Nickelocene/H ₂

Approach: Particle ALD/CVD catalysis system

Step 1: ALD onto fumed silica particles (~300°C)

Step 2: CNF growth and hydrogen co-production from methane gas (500-750°C)

• A hydrogen safety plan was submitted Fall 2020. Risks are identified below.

Item	Potential failure mode	Potential cause	Effect	Probability estimate	Severity	Detection	Risk Level	Mitigation
Viton O-rings	Leakage from poor seal	Degradation of O- ring due to high temperature	Loss of pressure and leaking of reaction gas	В	II	(1) Mass spec will detect change in gas concentration and baratrons detect deviation in pressure	Low	Inspect O-rings before every run and replace if damaged
Alumina reactor tube	Off-round condition	Manufacturer defect	Improper compression fitting seal around tube	С	II	(2) Reactor tubes checked for off- round when received	Low	Reactor tubes machined to resolve off-round
Reactor manifold system	Leak into or out of system	Loose Swagelok connection	Loss of pressure and leaking of reaction gas	В	ΙΙ	(1) Mass spec will detect change in gas concentration and baratrons detect deviation in pressure	Low	Connections rigorously helium leak-tested and tightened/replace if leaking
Electrical control system	Spark/ignition	Short	Creation of electrical spark or fire	A	111	(3) Visible spark/small fire and failure of electronics	Medium	Placement of electrical components well below any area that contains H ₂

SOPs are continually reviewed and updated for improved safety.

Achieved Go/No-Go Targets

TEA

CVDA 50% CH4 conversion will be achieved while producing H2 and CNFs having an
L/D > 10 with a carbon content of 25 wt% of the combined CNF + metal
catalyst + fumed silica support.

	Samples containing CNFs from sacrificial metal catalyst will show: (1)
Concrete	maximum crack sizes ≤100 μ m under drying conditions at 28 days; (2) an
	increased tensile ductility by 25% higher with CNFs in the optimized cement
	mix; (3) chloride permeability 25% lower when compared to standard
Design	accelerated-set high-strength cement obtained from cement manufacturers;
	and (4) no change in set time

On the basis of actual experimental results, an H2A analysis will be carried out including capex for H2 purification and selling price for byproduct CNF to achieve DOE's cost target of \$2/kg H2 selling price.

TEA

CVDA 50% CH4 conversion will be achieved while producing H2 and CNFs having
an L/D > 10 with a carbon content of 25 wt% of the combined CNF + metal
catalyst + fumed silica support.

	Samples containing CNFs from sacrificial metal catalyst will show: (1)
Concrete	maximum crack sizes \leq 100 μ m under drying conditions at 28 days; (2) an
Міх	increased tensile ductility by 25% higher with CNFs in the optimized cement
	mix; (3) chloride permeability 25% lower when compared to standard
Design	accelerated-set high-strength cement obtained from cement manufacturers;
	and (4) no change in set time

On the basis of actual experimental results, an H2A analysis will be carried out including capex for H2 purification and selling price for byproduct CNF to achieve DOE's cost target of \$2/kg H2 selling price.

Accomplishments: Reactor design and construction

Minimum fluidization of fumed silica under vacuum

Accomplishments: Preliminary ALD Studies

Nickel successfully deposited onto fumed silica support via $NiCp_2/H_2$ ALD

Carbon nanofibers can grow from CVD of methane on an ALD catalyst. CNFs grow via tip growth mechanism.

CVD				
Temperature	550°C			
Time of Reaction	3 hours			
CH ₄ Partial Pressure	0.10 atm			
H ₂ Partial Pressure	0.03 atm			
CH ₄ : H ₂	3			

Accomplishments and Progress: Achieved Target Carbon Yields

✓ CNFs with a L/D > 10 \checkmark 100 nm

Carbon content will be at least 25 wt% of
the total mass of CNF + catalyst + substratewt%Determined byNi9.8ICP-OESC26.5Carbon LECOSiO263.7Difference

Achieved Go/No-Go Targets

CVDA 50% CH4 conversion will be achieved while producing H2 and CNFs having an
L/D > 10 with a carbon content of 25 wt% of the combined CNF + metal
catalyst + fumed silica support.

	Samples containing CNFs from sacrificial metal catalyst will show: (1)
Concrete	maximum crack sizes \leq 100 μ m under drying conditions at 28 days; (2) an
Λλίν	increased tensile ductility by 25% higher with CNFs in the optimized cement
	mix; (3) chloride permeability 25% lower when compared to standard
Design	accelerated-set high-strength cement obtained from cement manufacturers;
	and (4) no change in set time

TEA

On the basis of actual experimental results, an H2A analysis will be carried out including capex for H2 purification and selling price for byproduct CNF to achieve DOE's cost target of \$2/kg H2 selling price.

Accomplishments and Findings: SEM images

Poorly dispersed CNFs

5.00kV 6.2mm X160

5.00kV 6.2mm X3.00k

10.0µm

Well-dispersed CNFs with sacrificial metal catalyst

2.00kV 6.4mm x5.50k SE

✓ Maximum crack sizes ≤100 μ m under drying conditions

Results:

- For 1 cm mortar cube, after moist curing for 7 days under room temperature and oven drying for 7 days at 85°C,
 - Cracks ~50 µm visible in the cube without CNFs, No cracks visible (at ~17.6 µm resolution) in the cube with CNFs from sacrificial metal catalyst
- For 1 cm mortar cube reinforced with CNFs, after air drying for 28 days under room temperature,
 - Crack size: still no cracks visible (at ~17.6 μm resolution)

Accomplishments and Findings: Compressive strength and flexural toughness

Table 2 Compressive strength

Type of CNFs	7-day, psi	Increase	28-day, psi	Increase
No CNFs	10500±500	control sample	12450 <u>+</u> 600	control sample
PR-19	10700 ± 1000	+2%	12700±1100	2%
Our fiber	9060±1000	-14%	9600 <u>+</u> 700	-23%

✓ Tensile ductility increased by 25%

Table 3 Flexural toughness

Type of CNFs	7-day, <i>N</i> * mm	Increase	28-day, N * mm	Increase
No CNFs	320.9 <u>+</u> 25	control sample	333 <u>+</u> 40	control sample
PR-19	398.6 <u>+</u> 20	+24%	441 <u>±</u> 70	+32%
Our fiber	321.2 <u>+</u> 25	0%	594.2 <u>+</u> 25	+78%

Table 4 Dispersion methods w/ CNF containing metal catalyst

Dispersion methods	7-day compressive strength, psi	Increase
Control sample	8700 <u>+</u> 60	Control sample
2*dispersion time	8800±10	+1.1%
2*HRWR	9600±400	+10.3%

Flexural test

Compression test

Note:

- Compressive strength according to ASTM C39
- Flexural toughness according to ASTM C348
- Requirement for HPC is 8000 psi compressive strength

Accomplishments and Findings: Chloride permeability

Table 5 Chloride permeability results

Samples	3-month chloride permeability		
No CNFs	Control sample		
Our fiber	-24.9%		
PR-19	-42.7%		

Ponding test

Note:

• The chloride permeability test – ASTM 1543.

Accomplishments and Findings: Setting time

Results:

- CNFs accelerate the hydration process. Concrete with our CNF set 1.8 hours earlier. This is a smaller change than seen with commercial fiber.
- Within this range optimization of set time can be achieved with chemical admixtures. This is part of the proposed BP3 tasks.

```
Note: Normalized Temperature = T_sample – T_environment
```

Achieved Go/No-Go Targets

CVDA 50% CH4 conversion will be achieved while producing H2 and CNFs having an
L/D > 10 with a carbon content of 25 wt% of the combined CNF + metal
catalyst + fumed silica support.

	Samples containing CNFs from sacrificial metal catalyst will show: (1)
Concrete	maximum crack sizes ≤100 μ m under drying conditions at 28 days; (2) an
	increased tensile ductility by 25% higher with CNFs in the optimized cement
	mix; (3) chloride permeability 25% lower when compared to standard
Design	accelerated-set high-strength cement obtained from cement manufacturers;
	and (4) no change in set time

TEA

On the basis of actual experimental results, an H2A analysis will be carried out including capex for H2 purification and selling price for byproduct CNF to achieve DOE's cost target of \$2/kg H2 selling price.

Accomplishments: Technoeconomic Analysis

Pressure Swing Adsorbers

Main Accomplishments and Findings: TEA

- Previous technoeconomic analysis cost inputs were adjusted for inflation
 - CEPCI₂₀₂₀ = 615 -> CEPCI₂₀₂₂ = 831

Real Levelized Values (per kg H2)

\$(5.00) \$- \$5.00 \$10.00 \$15.00 \$20.00 \$25.00 \$30.00

Real levelized costs output from DOE's H2A model, accounting for 2022 inflation values

Responses to Previous Year Reviewers' Comments

• Project was not reviewed in 2023

Collaboration and Coordination

Current Focus Areas/Barriers to Overcome

	CVD	Concrete Mix Design	Technoeconomic analysis
Current Focus Area(s)	 Optimizing catalyst morphology (particle size, dispersion) for CNF formation Optimize cost/ performance (metal loading) for CVD 	 Optimize co-product CNF characteristics based on improved (reduced metal) CNF product and their effect on dispersion and mechanics 	 Incorporate impact of IRA and reduced metal content on TEA
Barriers to overcome	 Generate enough product for civil engineering team for different CNF yields 	 Integration of <i>a variety</i> of co-product CNFs 	 Large-scale CCVD reactor design Limited knowledge of industrial prices Sensitivity to CNF yield, catalyst loading etc.

Proposed future work

Milestones: remainder of budget period 3

CVD

- Large batches of CNF product with varying yields will be produced based on prior research
- Optimizing catalyst morphology (particle size, dispersion) for CNF formation

Concrete Mix

- Summary of targeted material design objectives for product integration at scale
- Strength, modulus of elasticity and full stressstrain response of the final concrete containing the coproduct CNF will be reported

Technoeconomic analysis

- Incorporate impact of IRA on hydrogen pricing
- Incorporate catalyst optimization into TEA
- Create comprehensive report assessing commercial viability of this process at scale, including market endusers

Final Project Deliverable

A scalable low-cost CVD process to produce CNFs and H2 from CH4 using a sacrificial ALD catalyst deposited on a fumed silica substrate will be demonstrated. A minimum 10% Investors Rate of Return (IRR) for a process selling CNFs at an acceptable identified cost while selling H_2 for < \$2/kg.

Summary

Synthesis of H₂ and CNFs

- Carbon yields
 >25wt%C achieved with CNF L/D >10
- Sufficient quantity of product generated for initial civil engineering explorations.

Concrete mix design using lab-made CNFs

 Met or exceeded performance expectations with small batches of CNFs containing metal catalyst Technoeconomic analysis

 Updated TEA for 2022 inflation still results in economically promising process

Any proposed future work is subject to change based on funding levels

Acknowledgements

- Weimer Research Group Department of Chemical & Biological Engineering
- Hubler Research Group Department of Civil, Environmental, and Architectural Engineering
- Andrew Broerman, Theodore Champ Forge Nano
- Colin Lobo National Ready Mixed Concrete Association

ALC: NO.

University of Colorado Boulder