

STRATEGIC ANALYSIS

Hydrogen Production Cost and Performance Analysis

DOE Hydrogen Program 2024 Annual Merit Review and Peer Evaluation Meeting

PI: Brian D. James

Yaset Acevedo, Mark Jensen, Max Graham, Zachary Watts, Jacob Prosser, Jennie Huya-Kouadio, Kevin McNamara

Strategic Analysis AMR Project ID: P204 DOE Project Award No. DE-EE0009629 May 7, 2024

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Project Goal

- **Conduct technoeconomic analysis** to evaluate the cost to produce H₂ (\$/kg) through **various technological production pathways** (i.e., electrolysis, PEC, others) using
	- Design for Manufacture and Assembly (DFMA) capital cost estimation techniques,
	- Heat & mass balances, and
	- H2 Analysis (H2A) discounted cash flow models.
- **Estimate the cost of H²** based on state-of-the-art technology at **central production facilities** (50-500 tons per day) and **measure the cost impact** of technological improvements in $H₂$ production technologies.
- Evaluate the **cost drivers** and **recommend** to DOE the **technical areas needing improvement** for each technology.

Overview

Timeline

- Project start date: 10/1/2021
- Project end date: 9/30/2024
- Percent complete: ~80% of project

Barriers

- \blacksquare Hydrogen (H₂) Generation by Water Electrolysis
	- F: Capital Cost
	- G: System Efficiency and Electricity Cost
	- K: Manufacturing

Budget

- Total Funding Spent
	- \sim \$590K SA (though Feb 2024)
- Total DOE Project Value:
	- \cdot ~\$775 k SA
- Cost Share Percentage: 0% (not required for analysis projects)

Partners

- **National Renewable Energy** Laboratory (NREL)
- **Idaho National Laboratory (INL)**

Coordination

Phillips 66 DOE Project (Reversible SOFC)

Relevance and Impact

- Investigates production and delivery pathways selected/suggested by DOE that are relevant, timely, and of value to HFCTO.
- Supports selection of portfolio priorities through evaluations of technical progress and hydrogen cost status.
- Provides complete pathway definition, performance, and economic analysis not elsewhere available.
- Provides analysis that is transparent, detailed, and made publicly available to the technical community.
- Results of analysis:
	- Identifies cost drivers
	- Assesses technology status
	- Provides information to DOE to help guide R&D direction
	- $-$ Highlight real world scenarios that can achieve the H₂ Shot goal of \$1 for 1 kg hydrogen by 2031

Approach: Bottom-Up Project Cost Model for High-Temperature Electrolysis

Project Objective

- Support HFTO in their selection of portfolio priorities by evaluating technical progress of $H₂$ production pathways
- Assess the potential to meet H₂ production cost targets (H2 Shot: $$1/kg$ of H₂ by 2031)
- Evaluate the uncertainty and show the potential for H_2 cost reduction for each pathway through single and multi-variable sensitivity analyses
- Perform rigorous review of system design and assumptions, confirm the validity of assumptions with experts external to the project, and document results in reports and presentations

Approach

- Collect data via published journal articles, patents, and report
- Conduct DFMA analysis to estimate cost of electrolysis stack
- Obtain review of DFMA cost results and compare with other studies
- Conduct system modeling to estimate sizing of balance of plant components
- Plant and equipment sizing are based on end-of-life (EOL) operating conditions
	- Central: 50 Tons/Day (nominally)
	- (Distributed cases at 1.5 Tons/Day have been considered in past SA analyses. But current DOE focus is on Central cases)
- Update H2A model with new values to obtain updated $\frac{1}{2}$ /kg H₂ projections

Selected Pathway: Proton-Conducting Solid Oxide Electrolysis (P-SOEC)

Approach: Safety Planning and Culture

This analysis-type project is exempt from submitting a safety plan to Hydrogen Safety Panel

Proton vs. Oxygen Conducting SOEC Accomplishment and Progress

(P-SOEC is expected to have a higher current density than conventional O-SOEC)

P-SOEC Stack Operation

(Operate with Constant Current for Constant Hydrogen Production)

Operation Philosophy

- Thermoneutral operating point represents a compromise between thermal demand and electrical demand
- For constant hydrogen production, current density must remain constant over the life of the plant
- With stack degradation, voltage will increase over time.
	- Current Case: 6.4 mV/1000 h (0.54%/kh) degradation (US DOE 2022 O-SOEC Current State)
	- Future Case: 3.2 mV/1000 h (0.26%/kh) degradation
- To maintain an average voltage that matches thermoneutral voltage, the current density must be reduced from rated current density
- Lower current density better for OPEX, but worse for CAPEX

Currently assuming Future case has half the degradation and double the stack lifetime

Luo et al. "Durable and High-Performance SOECs Based on Proton Conductors for H2 Production". The 23rd Annual SOFC Project Review Meeting. 2022.

Modeled P-SOEC Cell Design and Manufacturing Accomplishment and Progress

(SA developed a bottom-up cost model for a P-SOEC stack)

Additional Notes

- Commercially available glass seal fired at 700°C
- Proton-conducting electrolyte discussed in WIPO Patent Application WO2022245710A2 and in <https://doi.org/10.1021/acsenergylett.2c01544>
- BCFN cathode discussed in <https://doi.org/10.1016/j.ijhydene.2023.07.041>
- Framed-cell stack design discussed in US Patent Application US20210249668A1
- Stainless steel tie-rods included for handling stacks post-conditioning

Improvements for "Future" design:

- Decrease the support layer thickness
- Increase cell active area to 15 cm x 15 cm

STRATEGIC ANALYSIS, INC.

9

P-SOEC Cost per Active Area

~10% stack cost reduction between Current and Future

(~\$0.097/cm² vs ~\$0.088/cm² at ~1GW/yr)

Current Central P-SOEC

P-SOEC Stack Cost Breakdown

Future Central P-SOEC

- **Values reported on this slide exclude markup and installation**
- Future system cost reduction due to: increased stack size
	-
	- reduction in support layer thickness
	- minor manufacturing improvements
	- (No power density improvement assumed & degrad. rate improvement doesn't affect $\frac{\epsilon}{\gamma}$)

Accomplishment and Progress

P-SOEC Cost per kW

~10% stack cost reduction between Current and Future

(~\$71/kW compared to ~\$64/kW at ~1GW/yr)

Current Central P-SOEC Future Central P-SOEC

- **Values reported on this slide exclude markup and installation**
- \$/kW costs are based on BOL stack power (selected operating point)
- Future system cost reduction due to: • increased stack size
	- reduction in support layer thickness
	- minor manufacturing improvements

Process diagrams developed for P-SOEC (Similar components to O-SOEC, but re-arranged & slightly re-sized) Accomplishment and Progress

Mechanical and Electrical BOP Component Cost Overview

- Balance of Plant can be broken down into two sub-components:
	- **Mechanical BOP:**
		- Consists of **equipment, piping, valves, and instrumentation**
		- Cost basis
			- **Major BOP Equipment**: Aspen-generated cost estimates based on technical specifications
			- **Piping**: Aspen-generated cost estimates based on sizing and materials specifications
			- **Valves**: Aspen-generated cost estimates based on sizing and materials specifications
			- **Instrumentation**: Published quotes from Plant Design and Economics for Chemical Engineers, Fifth Edition, 2003
				- Includes temperature, pressure, flow, and level indicators

– **Electrical BOP:**

- Consists of **rectifier and housing; electrical wiring; and electrical infrastructure**
- Cost basis
	- **Rectifier**: Quote from Rectifier vendor
	- **Transformer**: Estimate from 2013 engineering study
	- **Electrical Wiring**: Estimated using Craftsman methodology
	- **Electrical Infrastructure**: Estimated from publicly available price estimates

System Definition and Project Technical Parameters Accomplishment and Progress

(Current & Future Systems have same capacity. But Future has larger cells, lower degradation)

- Project balance of plant equipment sized using average conditions, assuming thermoneutral operation
- ∆T across P-SOEC stacks limited to 100°C
- Active Area:

Current case uses 10 cm x 10 cm Future case uses 15 cm x 15 cm

P-SOEC Electrolyzer and Project Capital Cost Accomplishment and Progress

(Comparison to alternative low-temperature electrolyzers)

1 GW/year annual electrolyzer

manufacturing rate

- Low-temperature electrolysis cases use a cost optimized current density which balances capital costs and electricity costs
- P-SOEC trades off cheaper stack cost with more expensive equipment costs

Site Preparation: Bottom-up cost estimate based on Craftsman cost methodology **Permitting costs**: General project estimate based on historic data **Engineering & design:** General project estimate assuming an Nth of a kind plant **Project contingency:** 15% contingency assumed for an Nth of a kind plant

Low temperature electrolysis results revised from last year to reflect continued cost model improvements and cost optimization

Accomplishment and Progress

Levelized Cost of Hydrogen (using optimized operating conditions)

\$2.37 \$2.36

- Constant electricity cost: \$0.03/kWh
- All costs in 2020\$
- \$0.03/kWh electricity, 97% capacity factor
- Current low-temperature electrolysis assume 4 x 12.5 MTD modules
- Future low-temperature electrolysis assume 2 x 25 MTD modules

Caveat: P-SOEC not fully BOP-size optimized

Current Technology

\$0.00

\$0.50

\$1.00

\$1.50

\$2.00

2020US\$ / kg H2

\$2.50

\$3.00

\$3.50

\$4.00

• HP Alkaline benefits from a simpler system (no compressor) and generally higher efficiency

HP Alkaline

PEM

P-SOEC

• PEM limited by relatively lower efficiency compared to alkaline systems

\$1.62

LP Alkaline

\$2.88

• P-SOEC benefits from lower stack replacement cost coupled with lower total energy usage

Future Technology

HP Alkaline

LP Alkaline

• Differences in LCOH between electrolyzer technologies shrink due to similar capital costs

P-SOEC

- HP Alkaline is able to achieve a relatively high efficiency while keeping capital costs low
- P-SOEC has a lower potential for cost reduction over time since total energy usage is not expected to significantly change and optimization to system design is limited

Low temperature electrolysis results revised from last year to reflect continued cost model improvements and cost optimization

PEM

Responses to Previous Year Reviewers' Comments

(Mostly in reference to our past Anion Exchange Membrane (AEM) electrolysis analysis)

Collaboration and Coordination

Conclusions, Remaining Challenges and Barriers

Proton-Conducting Solid Oxide Electrolysis Systems

- P-SOEC systems are promising for their low-cost stacks and low total energy usage
- For current assumptions for electricity price and capacity, P-SOEC has a favorable LCOH outlook compared to alternative electrolyzer technologies
- Additional energy usage optimization may be possible by lowering average stack voltage
- While further process analysis is required to confirm, P-SOEC is unlikely to be able to operate under dynamic operating conditions associated with low capacity-factor environments without batteries or other mitigating factors (O-SOEC as similarly limited)
- Durability and performance are significant issues, with current academic and industrial research focused on materials science
	- Air electrode and electrolyte must be resilient to steam while also maintaining high current density
	- Long term durability data is generally not available for early-stage technology
- Pilots and scale-up activities are expensive and difficult due to the high temperature required to operate and the significant number of system components

Proposed Future Work

- **Complete P-SOEC Technoeconomic Analysis**
	- System Cost analysis
		- Conduct sensitivity analysis: stack lifetime, durability, electricity price, and capacity factor
		- Vet cost results and sensitivity analysis with DOE and Idaho National Laboratory
	- Publish technical report in OSTI repository (Office of Scientific and Technical Information)

• **General Cost Model Improvements**

- Improve quality of piping & valve cost estimation
- Improve quality of EPC cost estimation
- Benchmark results against publicly available capital cost data

• **Conduct cost analysis of additional hydrogen production pathways**

- Collaborate with DOE on system design and operation
- Estimate total installed capital cost and resulting LCOH of system

Any proposed future work is subject to change based on funding levels.

Summary

• **Overview**

– Conducted technoeconomic analyses for P-SOEC hydrogen production technologies and compared to other electrolysis technologies

• **Relevance**

- Improve analysis models and increase understanding of areas demonstrating information deficiencies
- $-$ Technoeconomic analysis for H₂ Production:
	- Defines a complete production and delivery pathway
	- Identifies key cost-drivers and helps focus research on topics that will lower cost
	- Generates transparent documentation available to the community with relevant data for improved collaboration

• **Approach**

- Utilize various cost analysis methods for determining system cost: DFMA[®] and H2A
- Collaborate with NREL, ANL, INL, DOE, and tech experts to model alternative hydrogen production technologies
- Vet assumptions and results for correctness, completeness, and maximum transparency

• **Accomplishments**

– Published OSTI Technical Report for Alkaline Electrolysis:

Acevedo, Yaset M., Prosser, Jacob H., Huya-Kouadio, Jennie M., McNamara, Kevin R., and James, Brian D., Hydrogen Production Cost with Alkaline Electrolysis. United States: N. p., 2023. Web. doi:10.2172/2203367.

– (In Development) Public distribution of AEM-KOH and AEM-Water Electrolysis technoeconomic analysis

