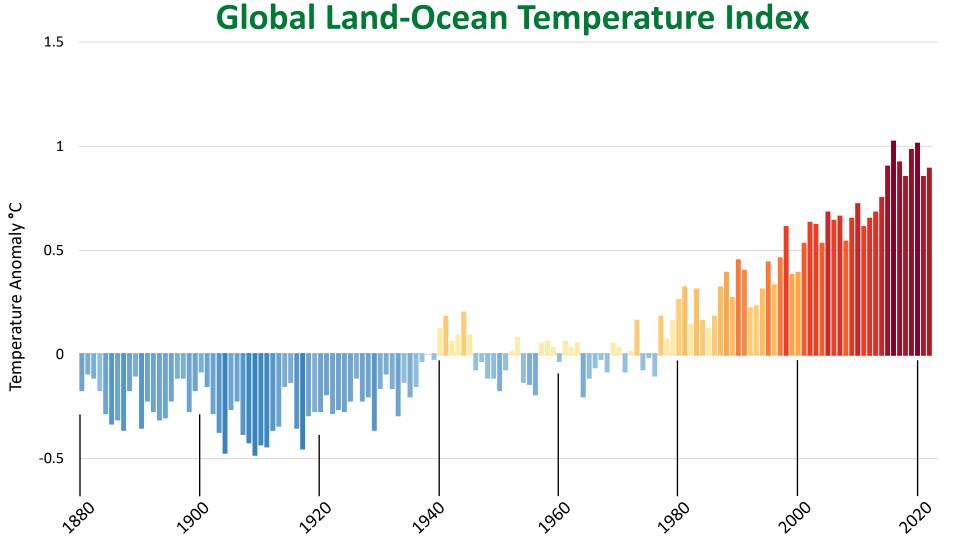


U.S. DOE Hydrogen Program Annual Merit Review (AMR) Plenary Remarks

Dr. Sunita Satyapal
Director, Hydrogen and Fuel Cell Technologies Office, and
DOE Hydrogen Program Coordinator

Agenda

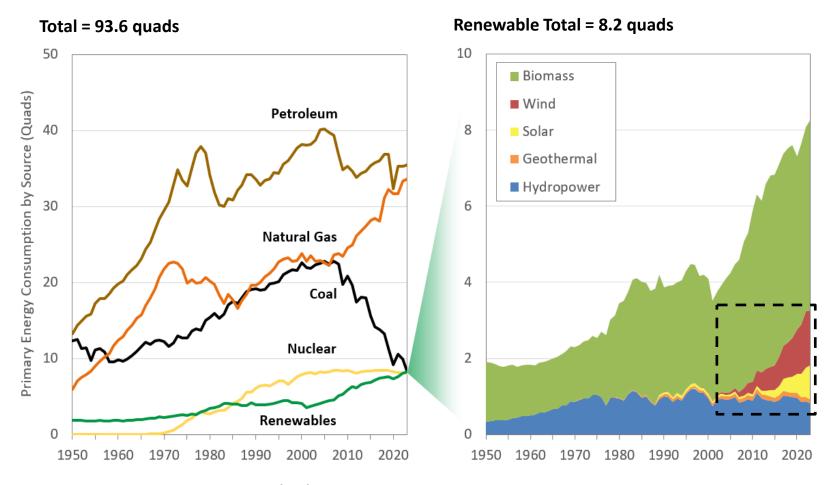
National Strategy & Goals


2 Program Plans

3 Accomplishments

4 Collaborations

The Global Challenge....



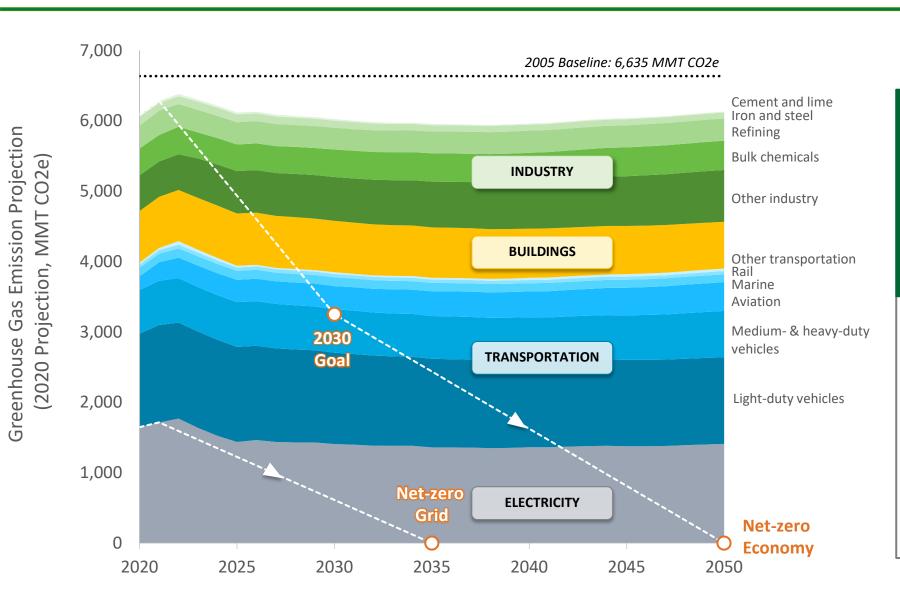
The 10 most recent years were the warmest years on record.

Source: https://climate.nasa.gov/vital-signs/global-temperature/?intent=121-; Chilton, et al, DOE HFTO, based on NASA Goddard Institute for Space Studies reported data

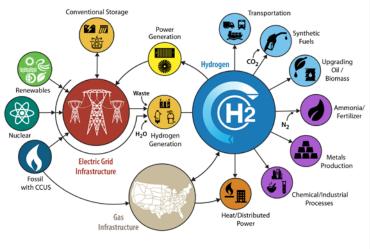
U.S. Energy Landscape and Key Goals

U.S. Primary Energy Consumption by Energy Source

Administration Goals include:


- Net-zero emissions economy by 2050 and 50–52% reduction by 2030
- 100% carbon-pollution-free electric sector by 2035

Priorities: Ensure benefits to all Americans, focus on jobs, Justice 40: 40% of benefits in disadvantaged communities


Quad= quadrillion British thermal units (Btu)

Source: Melaina, Chilton, et al, DOE HFTO, based on data collected from U.S. Energy Information Administration, *Monthly Energy Review,* April 2024, Table 1.3. https://www.eia.gov/totalenergy/data/browser/?tbl=T01.03#/?f=A

Carbon Dioxide Emissions by Sector

Hydrogen is a key element of a comprehensive portfolio of solutions to enable net zero

President Biden Signs Key Bills into Law – Examples of Policies and Activities

Bipartisan Infrastructure Law (BIL) provides \$9.5B for clean H₂ and Inflation Reduction Act (IRA) includes significant tax credits

President Biden Signs the Bipartisan Infrastructure Bill into law on November 15, 2021.

Photo Credit: Kenny Holston/Getty Images

BIL Required National Clean Hydrogen Strategy and Roadmap

Examples of policies & activities across the H₂ value chain

Supply

Production Tax Credit 45V, 45Q (Treasury)

Electrolyzer RD&D BIL (DOE)

Manufacturing Tax Credit 48C (Treasury/DOE)

H2 Hubs, BIL (DOE)

Midstream

Fueling Corridor Grants (DOT/JO)

Bipartisan PIPES Act NPRM (DOT PHMSA)

Manufacturing Tax Credit 48C (Treasury/DOE)

H2 Hubs, BIL (DOE)

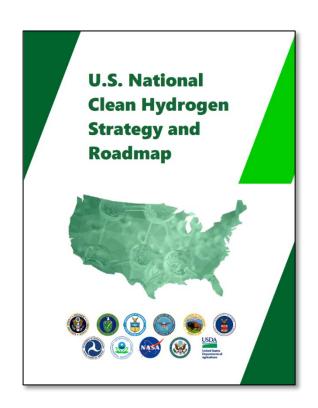
End Use Demand

Vehicle Tax Credits, Clean Fuels Credits, 48C (Treasury)

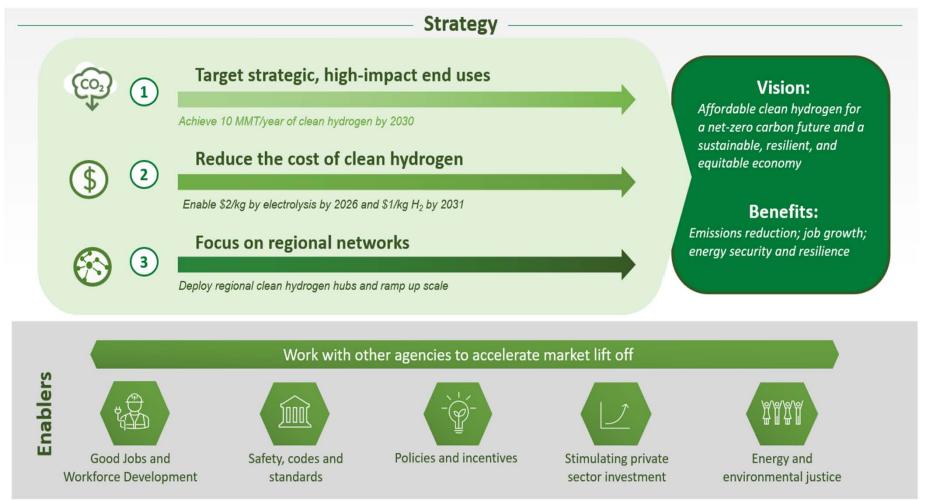
State Policies (ZEV Mandates, H2 PTC)¹

Clean Power Rule NPRM (EPA)

Buy Clean Standards (EOP)

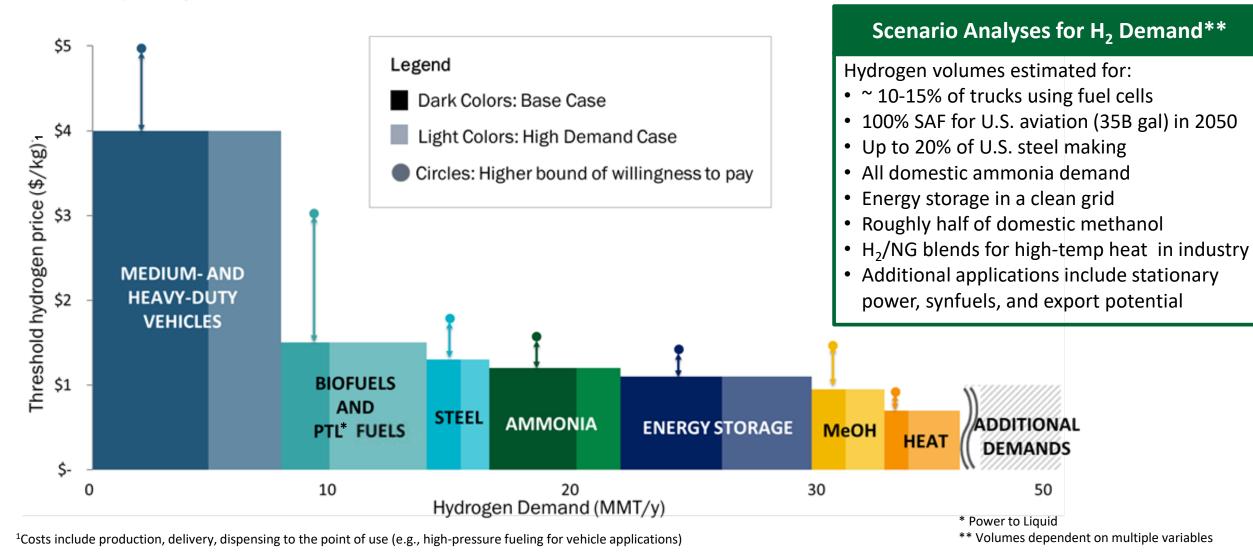

Agency offtake (DOD, USPS, USDA, DOT, EPA, etc.)

H2 Hubs (including Demand Side Initiative) BIL (DOE)

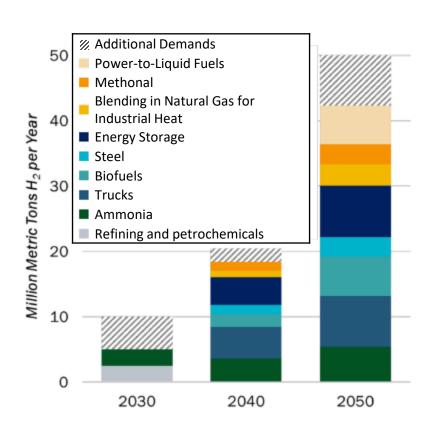

JO: Joint Office of Energy and Transportation; EOP: Executive Office of the President, NPRM: Notice of proposed rulemaking ¹: ZEV Mandates see: https://www.c2es.org/document/us-state-clean-vehicle-policies-and-incentives/. State example https://leg.colorado.gov/bills/hb23-1281.

U.S. National Clean Hydrogen Strategy and Roadmap

U.S. National Clean Hydrogen Strategy and Roadmap

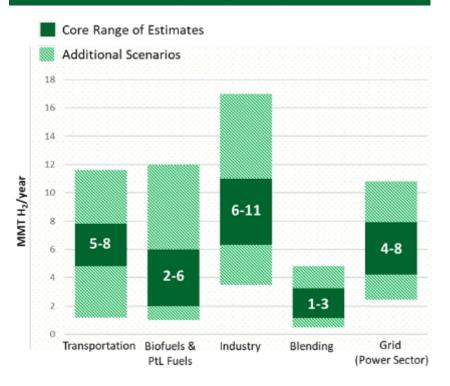

www.hydrogen.gov
Released June 5, 2023

U.S. Opportunity: 10MMT/yr by 2030, 20 MMT/yr by 2040, 50 MMT/yr by 2050. ~100K Jobs by 2030. ~10% Emissions Reduction by 2050.


Strategy 1: Target High-Impact Uses of Hydrogen

Clean Hydrogen Demand and Costs for Market Penetration

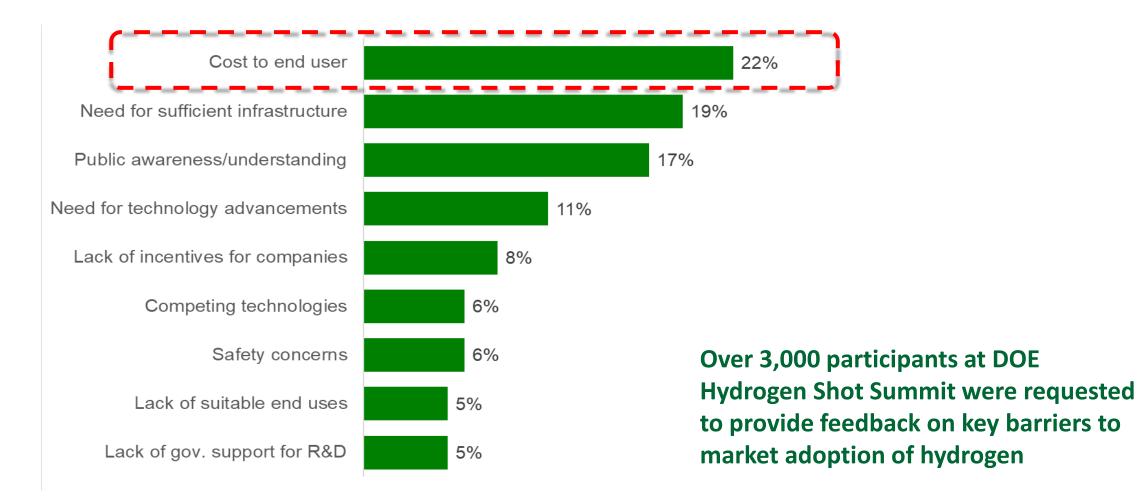
Strategy 1: Target High-Impact Uses of Hydrogen


Opportunities for Clean Hydrogen Across Applications

Clean Hydrogen Use Scenarios

- Catalyze clean H₂ use in existing industries (ammonia, refineries), initiate new use (e.g., sustainable aviation fuels [SAFs], steel, potential exports)
- Scale up for heavy-duty transport, industry, and energy storage
- Market expansion across sectors for strategic, highimpact uses

Range of Potential Demand for Clean Hydrogen by 2050



• Core range: ~ 18–36 MMT H₂

Higher range: ~ 36–56 MMT H₂

Refs: 1. NREL MDHD analysis using TEMPO model; 2. Analysis of biofuel pathways from NREL; 3. Synfuels analysis based off H2@Scale; 4. Steel and ammonia demand estimates based off DOE Industrial Decarbonization Roadmap and H2@Scale. Methanol demands based off IRENA and IEA estimates; 5. Preliminary Analysis, NREL 100% Clean Grid Study; 6. DOE Solar Futures Study; 7. Princeton Net Zero America Study

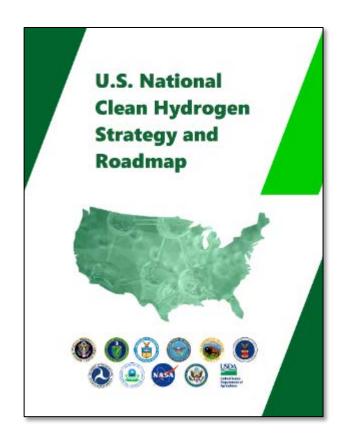
Stakeholder Reported Barriers to Hydrogen Market Adoption

Source: Hydrogen Shot Summit, Sept 2021

https://www.energy.gov/eere/fuelcells/hydrogen-shot-summit

Strategy 3: Focus on Regional Networks and Ramp-up Scale

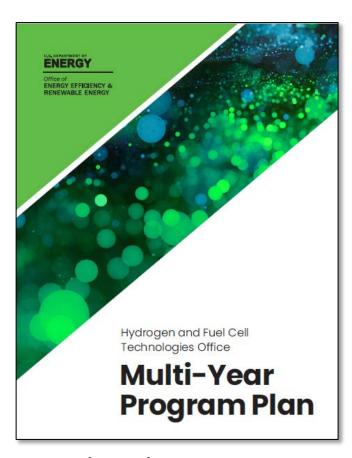
President Biden announces \$7B for 7 H2 Hubs, Oct 2023

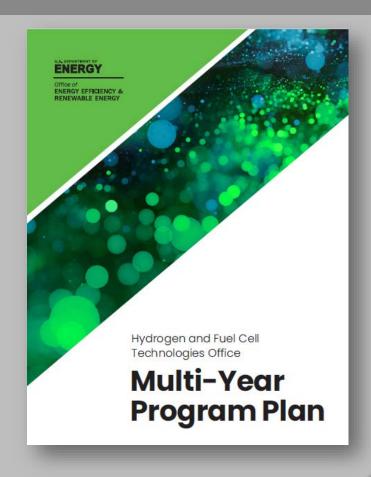

Demand side strategy for Hubs announced

DOE selects
consortium to bridge
demand for clean H₂
providing market
certainty and unlock
private capital
Jan 2024

H2 Hubs managed by OCED: See https://www.energy.gov/oced/office-clean-energy-demonstrations

Key Publications


Analysis and guiding documents provide framework for key activities from basic science through deployment



Modal plans underway Rail, offroad, marine, etc.

Released May 6, 2024 www.energy.gov/eere/fuelcells/mypp

HFTO Multi-Year Program Plan Released Today!

The Hydrogen and Fuel Cell Technologies Office (HFTO)

Mission

Research, development, and demonstration (RD&D) of hydrogen and fuel cell technologies to advance:

- Clean Energy and Emissions Reduction Across Sectors
- Job Creation and a Sustainable and Equitable Energy Future

HFTO Subprograms

Hydrogen Technologies

Hydrogen Production

Hydrogen Infrastructure

Fuel Cell Technologies

Materials & Components

Systems

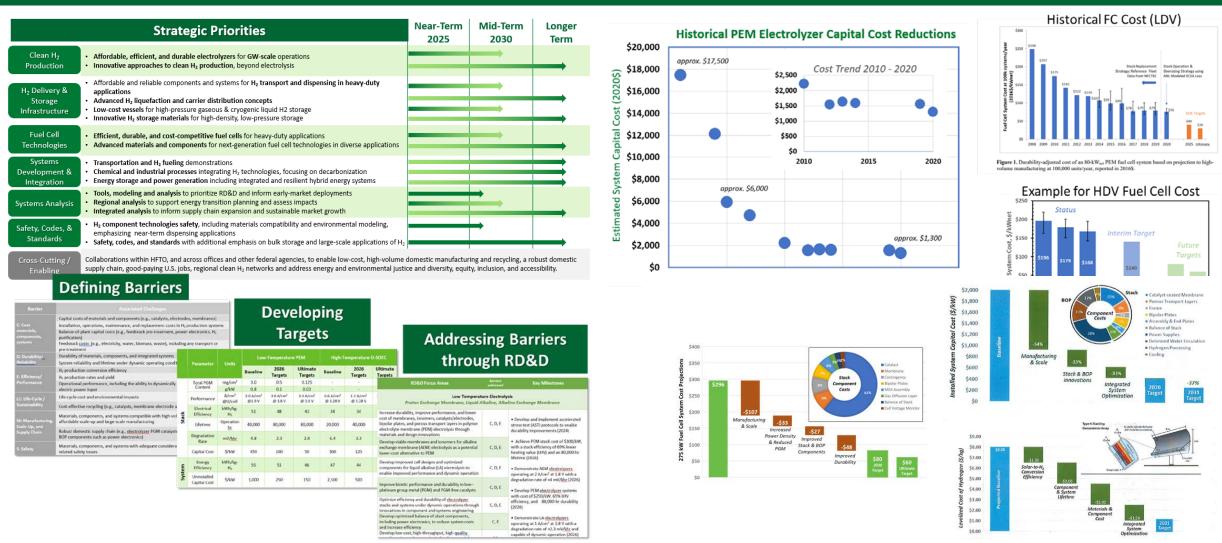
Systems Development & Integration

Transportation

Chemical & Industrial Processes

Energy Storage & Power Generation

Enabling

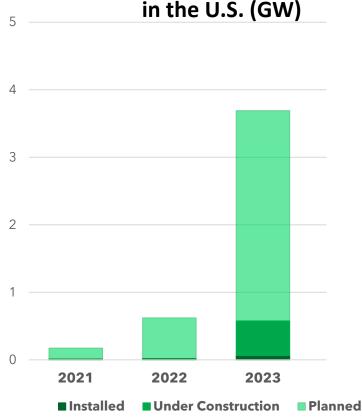

Systems Analysis

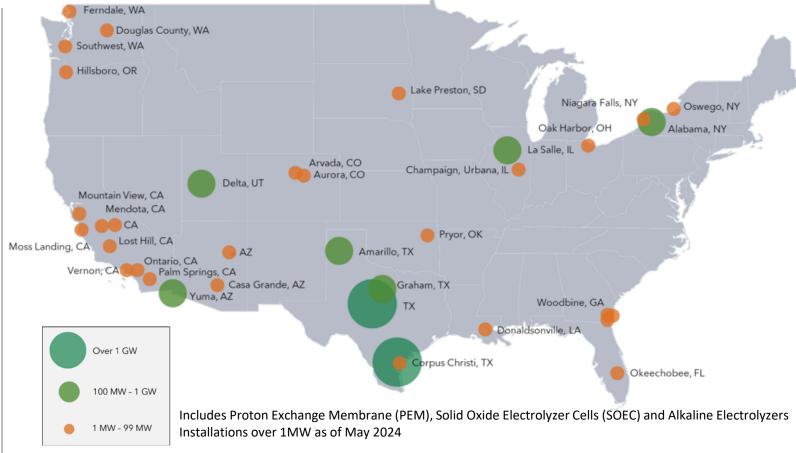
Safety, Codes & Standards

Crosscutting / Enabling: manufacturing, supply chain, workforce, regional clean H₂ networks

HFTO Multi-Year Program Plan (MYPP) Overview

MYPP includes strategic priorities, targets, barriers, and pathways to address them.

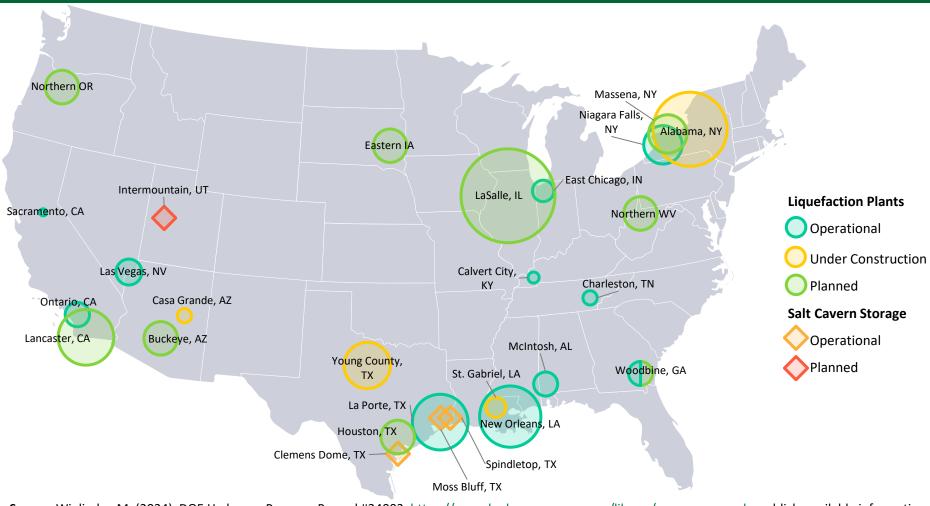

https://www.energy.gov/eere/fuelcells/articles/hydrogen-and-fuel-cell-technologies-office-multi-year-research-development



Planned and Installed Electrolyzer Capacity in the U.S.

Total 4.5 GW in Electrolyzer Capacity ~1 GW added since 2023 (Up by >20%)

Cumulative Electrolyzer Installations in the U.S. (GW)



Source: Hubert, M., & Arjona, V. (2024). DOE Hydrogen Program Record# 24001 https://www.hydrogen.energy.gov/library/program-records

Existing and Planned Liquefaction and Salt Cavern Storage

~800 Metric Tons per Day (TPD) Liquefaction Capacity >330 GWh Salt Cavern Storage Currently; 150-300 GWh More Planned

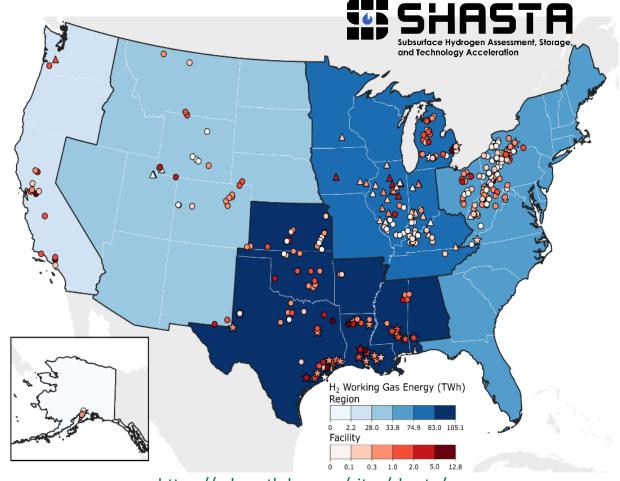
Operating U.S. Hydrogen Liquefaction Plants 14 Operating at 5-32 TPD 304 TPD total capacity

Planned U.S. Hydrogen
Liquefaction Plants
4 Under Construction &
9 Planned at 11-90 TPD
490 TPD total capacity

U.S. Hydrogen Storage
Caverns
3 Operating, 1 Planned
4 Total
100-150 GWh capacity

Additional liquefaction plants in Canada: 3 operating (~50 TPD) + 1 planned (35 TPD)

Source: Wieliczko, M. (2024). DOE Hydrogen Program Record #24003, https://www.hydrogen.energy.gov/library/program-records, publicly available information, and NREL


Potential for Large Scale Subsurface Storage

Assessing Potential for Subsurface Storage

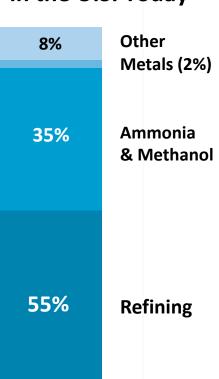
- ~ 400 active underground natural gas storage facilities in the U.S. today (~12% saline aquifers, 79% depleted reservoirs)
- Conversion to H₂ could store
 9.8 MMT H₂ (~330 TWh)

SHASTA goals include:

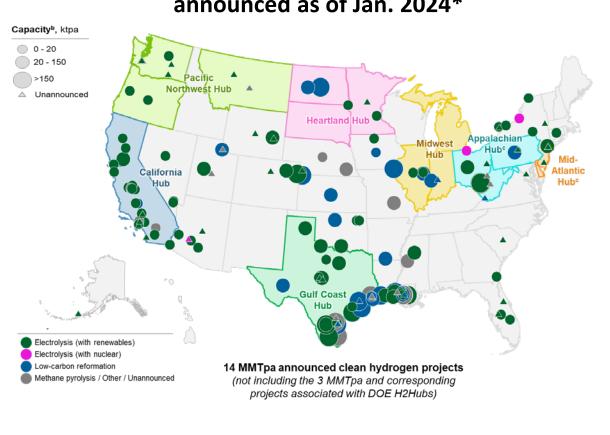
- Quantify operational risks
- Develop enabling tools, technologies, recommended practices
- Develop a collaborative field-scale test plan in partnership with relevant stakeholders

https://edx.netl.doe.gov/sites/shasta/

Lackey et al., 2023 (https://doi.org/10.1029/2022GL101420)

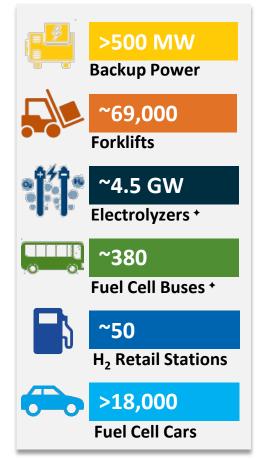

Sandia National Laboratories

Snapshot of Hydrogen and Fuel Cells in the U.S.


10 million metric tons H₂ produced annually | More than 1,600 miles of H₂ pipeline

World's largest H₂ storage cavern

Use of Hydrogen in the U.S. Today

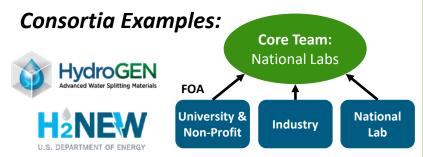


Clean hydrogen production projects announced as of Jan. 2024*

*DOE Commercial Liftoff Report Updates available soon.

Examples of Deployments

^{*}Buses and electrolyzers include planned / under construction / deployed


Ongoing Work and Accomplishments to Address Key Priorities

DOE Hydrogen Activities across RDD&D – Examples

Research and Development

Basic and applied research through individual projects and consortia

Basic science user facilities, theory, modeling

New areas include AI/machine learning

Technology Integration, Validation, Demos

1st of a kind demonstrations and systems integration to de-risk deployments

Examples:

Renewable and nuclear to H_2 , 15 delivery trucks in disadvantaged area, 3 Super Truck projects, data center, energy storage, H_2 for steel

Deployment and Financing

H2 Hubs, loan guarantee program, workforce development

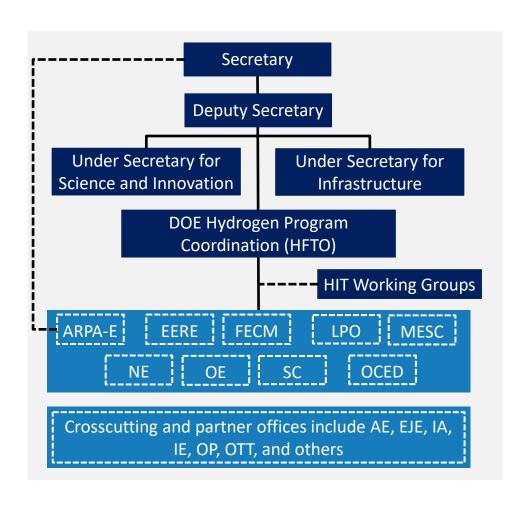
Example:

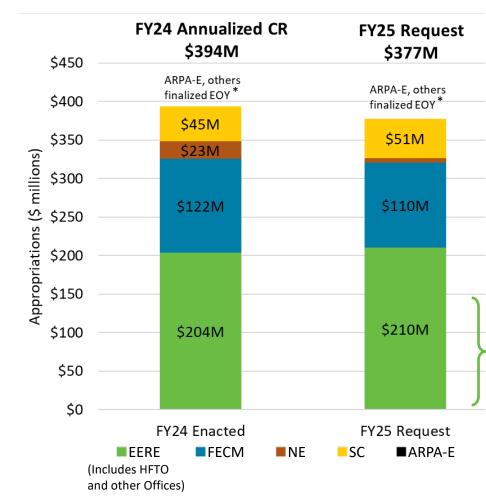
\$7 billion for 7 hubs: Renewables, fossil w/ CCS, nuclear; multiple end-uses

2 new loan guarantee projects (\$1.5B total) on pyrolysis and large-scale electrolysis, H_2 energy storage and power generation

Enabling Activities

- Analysis and tools
- Safety, codes & standards
- Manufacturing
- Workforce development





Energy Justice and Equity Collaborations across programs

The U.S. DOE Hydrogen Program – Coordinated across Offices

Comprehensive, coordinated program across offices with \$377M in FY25 Budget Request

Annual
Appropriations
Budgets
(excludes BIL \$9.B funding and LPO)

HFTO FY24: \$170M FY25 Request: \$170M

FY25 Request: Production: \$15M; Infrastructure: \$52M; Fuel cells: \$25M Syst. Dev.Integ:\$75M; Analysis: \$3M

DOE Hydrogen Program coordinated through HFTO. Source: https://www.energy.gov/sites/default/files/2023-03/doe-fy2024-budget-volume-2-crosscutting-v3.pdf

*Final to be updated by end of year (EOY), e.g., ARPA-E, SC funding is determined annually based on programs/selections. Annual funding only, excludes BIL funding and new offices (e.g., OCED)

HFTO Enabled Accomplishments

Innovation

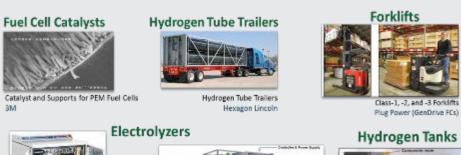
1089 Active Patents

Total since 2004

Due to HFTO funding
Inventors from Labs, Industry
and Academia

1361 cumulative patents, including those expired

Technology-to-Market


30 Technologies Commercialized

By industry*

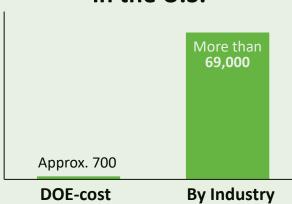
65 With Potential to Enter Market

in the next 3-5 years*

Examples of Technologies Enabled

Electrolyzers

Electrolyzer System PEM Electrolyzer System


Proton Series Giner

Discriptional season of Chair season of Figs. Son

Optimized 129L Tank Quantum Technologies

Market Uptake

Hydrogen fuel cell forklifts in the U.S.

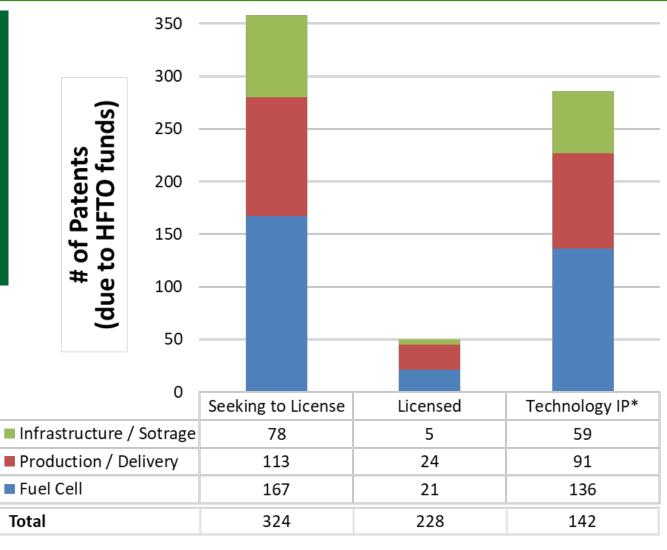
American-made small-scale hydrogen refueler

shared

- Exported to Japan
- Uses electrolysis

^{*} Enabled by HFTO funds. Additional tracking underway and available soon.

Snapshot of Patents due to HFTO Funding


179 organizations received patents due to HFTO funding

~42% of patents across 109 companies ~36% across 14 national labs ~21% across universities

Next Steps

Accelerate tech transfer and connect innovations with investors and manufacturers

Stay tuned at www.hydrogen.energy.gov

^{*}Technology IP are patents related to commercial or near market-ready technologies (preliminary assessment by PNNL) resulting from HFTO R&D funding

Source: Annual HFTO-funded patent tracking study conducted by PNNL

Key Activities Across DOE Addressing Program Priorities

Program Priorities

Key Activities to Address Priorities

Low-Cost Clean Hydrogen Production

H2NEW, HydroGEN, ElectroCAT, H2 Shot Incubator Prize, EERCs, EFRCs, ARPA-E NH_{3.} Pyrolysis, Geologic H₂

2 Safe, Low-Cost Delivery and Storage Infrastructure

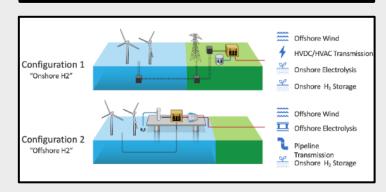
H-Mat, HyBlend, HyMARC, SHASTA, C-Fiber, Liquid H₂, H₂ Carriers, HD Dispensing, Sensors

Low-Cost, Durable, and Efficient Fuel Cells & Low-NOx Turbines

M2FCT, ElectroCAT, Low-NOx Turbine RD&D, ARPA-E INTEGRATE, EFRCs (e.g., CABES)

Enable End Use Applications at Scale

H2@Scale Demos, Clean Hydrogen Hubs, NE Integrated Energy Systems, ARPA-E (e.g., REEACH)


Examples from multiple offices across DOE

Examples of Highlights Across Applied RD&D Offices

EERE

NREL Flatirons Campus ARIES
H2 System: Commissioned & Operational:
1.25MW electrolyzer, 1MW fuel cell, storage

Offshore Wind and Hydrogen Use Case Studies: *Cross-Office Collaboration*

FECM

Hydrogen Shot assessment on thermal pathways (e.g., SMR/ATR with CCS)

National Petroleum Council Study https://harnessinghydrogen.npc.org/

National Strategy Targets (2024-2028)
9 ppm NOx for 100% H2 turbines
2 ppm with selective catalytic reduction

Co-funding H2 Shot incubator prize Phase 2 with HFTO

https://netl.doe.gov/projects/files/HydrogenShotTechnologyAssessmentThermalConversionApproaches 120523.pdf

NE

Nuclear-powered production of H₂ and syn-fuels, first-of-a-kind demos

Nine Mile Point: 1.25 MWe PEM Started Feb 2023 (Constellation)

Prairie Island: 150 kWe SOEC H₂ production planned ~July 2024 (Xcel Energy)

Davis-Besse (Vistra): 1-2 MWe

Co-funding with HFTO

Still Need Technology Cost Reductions – Targets guide RD&D

Key Goals: Reduce the cost of fuel cells and hydrogen production, delivery, storage; and meet performance and durability requirements—guided by application-specific targets. Status shows scenario analyses.

Note: Graph is not to scale. For illustrative purposes only

Cost Analysis (2023; Program Record #24004), adjusted to

reflect cost of system that meets 25,000 hours durability

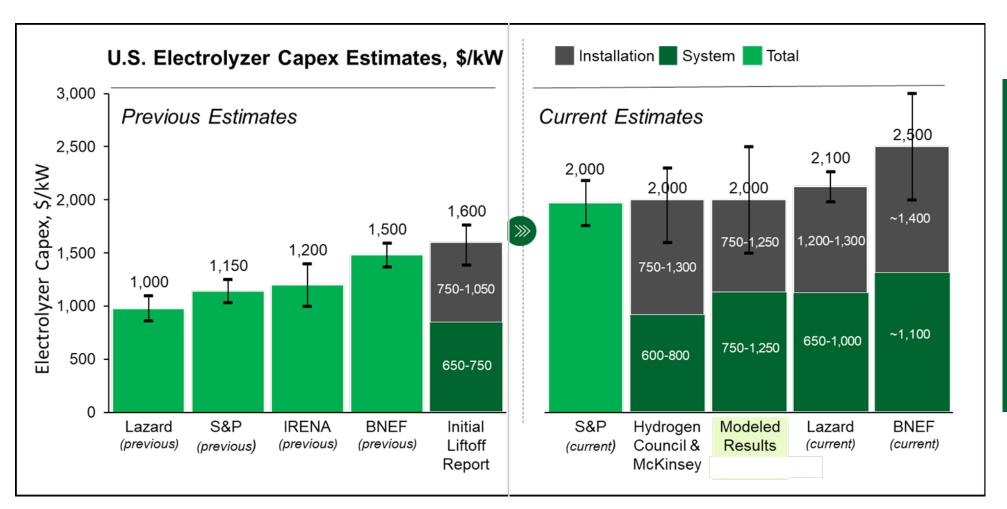
Assessment Report)

* Based on NETL analysis including projected modeled cost for

SMR/ATR with CCS and technology advances at volume (H2 Shot

utilization, liquid delivery or onsite production, and clean hydrogen

*Assumes large-scale fueling stations (8 tonnes/day or more) with 50%

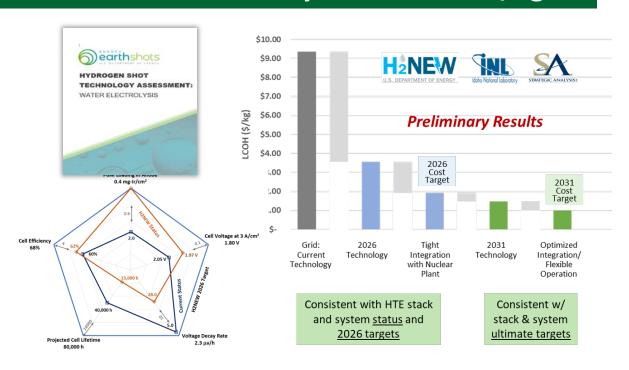

or higher utilization, supplied by liquid delivery or onsite production,

production cost of \$5/kg. Does not include markup.

and a cost of production of \$1.50/kg.

Tracking Electrolyzer Costs

Updated Electrolyzer Cost Estimates from Multiple Sources: ~ \$2,000/kW Including Installation


Levelized cost of hydrogen (LCOH) ~\$5-\$7/kg

- Without subsidies
- Specific cases using renewables
- ~\$30/MWh and ~50-75% capacity factors

DOE Hydrogen Program Record and Commercial Liftoff report updates coming soon: www.hydrogen.energy.gov and https://www.hydrogen.energy.gov/library/program-records

Recent Highlights – Production

Metrics and Pathways to \$2 and \$1/kg

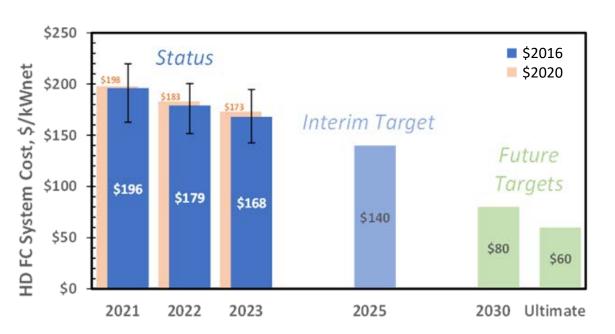
Incubator Prize, H2LinkSC, and More

Advanced
Pathways Experts
Meeting

New projects on AEMs, hi-T electrolysis, non-PFAS with fuel cell collaboration

FOA topic on
Carbon
Negative H₂
(Collaboration w/
FECM; up to \$7M)

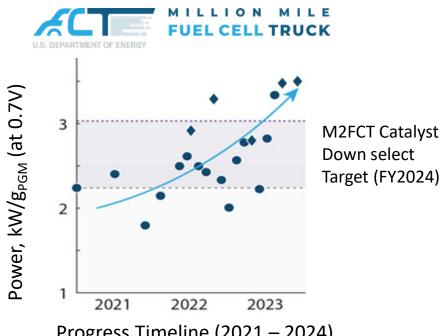
- H2NEW developing Figure of Merit to track progress; need cost, performance, durability
- Developed scenarios to achieve \$2/kg and \$1/kg and Tech assessment reports


Selected new projects: See Bipartisan Infrastructure Law (BIL) new project slides

- Down-selected 4 Hydrogen Shot Incubator Prize projects for Phase2 (off-roadmap concepts)
- Held experts meeting on advanced pathways
- Initiated H2LinkSc pilot; connect to basic science

Hydrogen Shot Incubator Prize: www.herox.com/HydrogenShotPrize

Recent Highlights – Fuel Cells

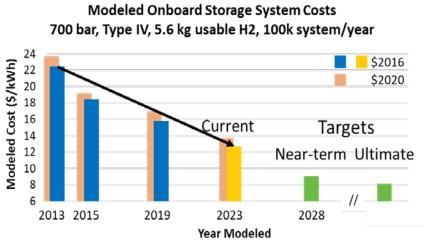

Heavy-duty (HD) Truck Fuel Cell Cost

- Modeled cost reductions based on technology advances at mid-/high-volume manufacturing
- Stack cost: \$105/kW_{net} at 50,000 systems/year

Selected new projects: See Bipartisan Infrastructure Law (BIL) new project slides

M2FCT Catalyst Progress

Progress Timeline (2021 – 2024)

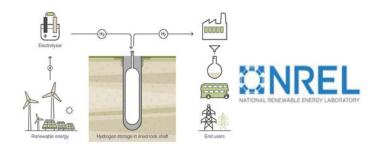

- Significant progress on catalyst and support development through M2FCT
- Next step is MEA AST testing

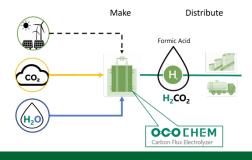
AST – Accelerated Stress Test

Cost status (2021, 2022, 2023) in 2016\$ (blue bars) and 2020\$ (orange bars) vs. interim target (2025) for a manufacturing volume of 50,000 systems/yr. 2030 and ultimate targets are at 100,000 systems/yr. Program Record #20004; https://www.hydrogen.energy.gov/library/program-records – available soon

Recent Highlights – Storage

Carbon Fiber Tanks




Liquid Hydrogen Tanks

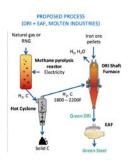
- Down-selected for Phase II project (Hexagon)
- Targets 50% reduction in carbon fiber contribution to tank costs
- First-of-its-kind tank design to enable world's largest, nonvacuum insulation LH2 tank
- 20,000 m³ 100,000 m³ (1420 7100 tons)

Carriers and Subsurface

- First-of-its-kind engineered subsurface storage at NREL (10 tonnes) for 5+ MW and end uses
- RFP issued proposals due 5/16
- R&D on DME, formic acid, NH₃

Recent Highlights – Systems Development and Integration, and More

SuperTruck Projects


general motors Southern Company nel* Argonne

- Demonstrating class 8 (Daimler) and class 4-6 (GM, Ford) fuel cell trucks
- All have developed and commissioned fuel cell systems

Industrial

New FOA topic: Industrial Pre-FEED Study FOA Topic w/ IEDO

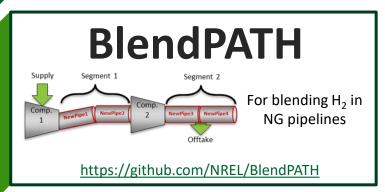
~\$1.9B in H₂ for industry projects selected by OCED (\$6B Total)*

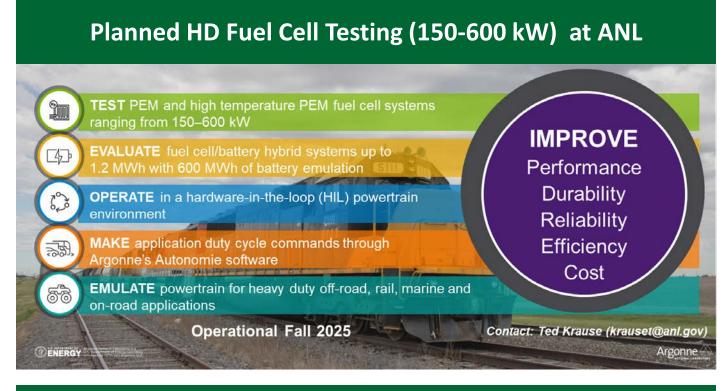
- New H₂ for steel projects (Hertha Metal; Molten, U. Wisconsin)
- Demonstrated 1 tonne/wk reduction of iron with hydrogen (MS&T)

*See Backup Slides for OCED IDP projects

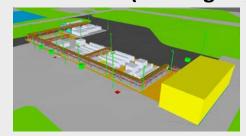
Enabling Stations & More

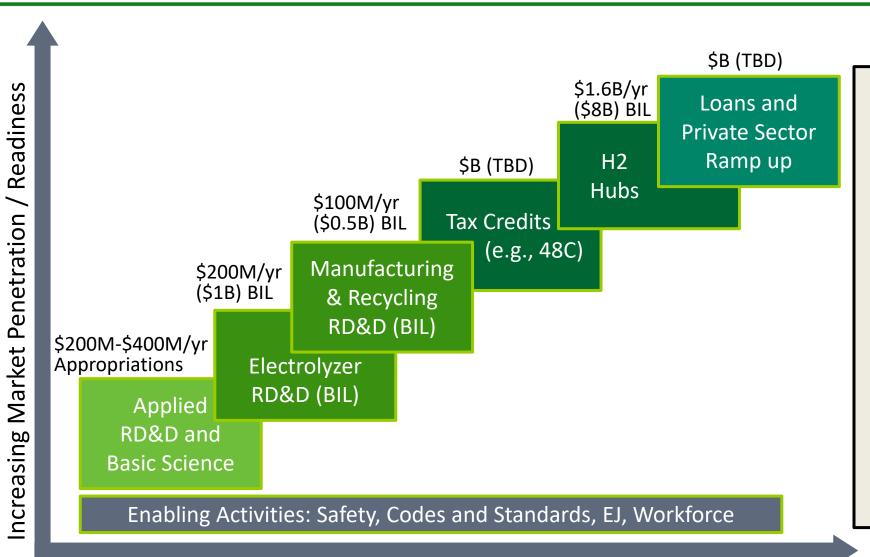
Demonstrated fast fueling for H₂ trucks


New FOA Topics: Station of the Future (\$30M) Port equipment Topic (\$10M) Fueling Components (\$10M) Siting, Permitting (\$6M)


- Supporting station and fueling component development
- First LH2 projects for rail
- Completed 1.5 MW H₂ fuel cell for data center project

Recent Highlights – New Capabilities, Tools, Safety, Codes and Standards




Expansions underway for up to 10 MW electrolyzer testing

Online in 2025 (INL- High T)

Context: DOE Hydrogen Portfolio Activities including BIL

BIL Provisions:

- \$1B for Clean Hydrogen
 Electrolysis Program (Sec. 816)
 - \$200M/yr (FY22-FY26) to enable \$2/kg H₂ by 2026
- \$500M for Clean Hydrogen Manufacturing & Recycling (Sec. 815)
 - \$100M/yr (FY22-FY26) to enable manufacturing and recycling

Increasing Technology Readiness Level (TRL)

Major Accomplishment – Announced in March 2024

Department of Energy

Biden-Harris Administration Announces \$750 Million to Support America's Growing Hydrogen Industry as Part of Investing in America Agenda

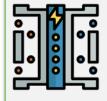
March 13, 2024

52 projects across 24 states to accelerate breakthroughs in clean hydrogen technology, cutting costs and supporting DOE's Hydrogen Hubs and other large-scale deployments.

https://www.energy.gov/articles/biden-harris-administration-announces-750-million-support-americas-growing-hydrogen

Impacts of BIL Funding for Electrolysis, Recycling, and Manufacturing

52 Projects


RD&D and manufacturing for domestic supply chain. Enables \$2/kg H₂ by 2026 and \$80/kW fuel cells by 2030

RD&D for domestic manufacturing and support for H2 Hubs

Electrolysis 10 GW/yr

Supports production of 1.3M metric tons of H₂/year

Fuel Cells

14 **GW/yr**

Capacity for 100,000 HD fuel cell stacks, corresponding to 50,000 trucks (~15% of annual sales)

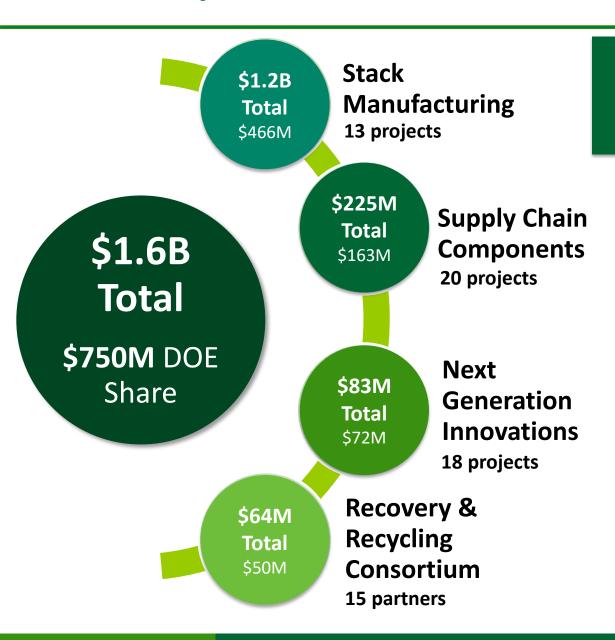
\$1.6B

Total Project Costs

Including ~\$750M in federal cost share and ~\$850M in cost share

1,500+

Direct jobs created


Plus, thousands of indirect jobs across the U.S.

24 States

Benefiting 32 disadvantaged communities across the U.S. with initiatives in workforce development, energy equity, and DEIA

BIL Electrolyzer and Fuel Cell FOA Selections Overview

Includes first-of-its kind consortium to develop domestic recovery and recycling capability for electrolyzers and fuel cells

H₂CIRC

Circular Recycling for the H₂ Economy Consortium

- AIChE (PI)
- Chemours
- Cummins
- Delaware State U.
- General Motors
- Heraeus
- Johnson Matthey
- Nel Hydrogen
- Plug Power
- Strategic Analysis Inc.
- U. of Delaware
- U. of Houston
- Worchester Poly
- Labs: ORNL,NREL,LBNL

Anticipated Project Locations and Prime Recipients

Based on selections announcement – to be updated pending final awards 32 34 38 6 22 4 24 14 47 33 37 43 Electrolyzer 7 Manufacturing Cummins Electric Hydrogen **NexTech Materials** OxEon Energy Plug Power Nel Hydrogen thyssenkrupp nucera 8. Verdagy

Electrolyzer Supply Chain

- 9. ACS Industries
- 10. eSpin Technologies
- 11. HighT-Tech
- 12. Ionomr Innovations
- 13. Mott Corporation
- 14. Pajarito Power
- 15. Power to Hydrogen
- 16. PPG Industries
- 17. The Chemours Company
- 18. West Virginia University

Components Electrolyzer

- 19. 3M Company
- 20. Avium
- 21. Boston University
- 22. Chemtronergy
- 23. Clemson University
- 24. Colorado School of Mines
- 25. Ecolectro
- 26. Georgia Tech
- 27. Georgia Tech
- 28. Nel Hydrogen
- 29. Plug Power
- 30. Stanford University
- 31. Tetramer Technologies
- 32. University of North Dakota
- 33. University of Oklahoma
- 34. University of Oregon
- 35. W. L. Gore & Associates
- 36. West Virginia University

Fuel Cell Manufacturing

- 37. Ballard Power Systems
- 38. General Motors
- 39. Nuvera Fuel Cells
- 40. Plug Power
- 41. Robert Bosch

Fuel Cell Supply Chain

- 42. AvCarb Material Solutions
- 43. Ballard Power Systems
- 44. Cabot Corporation
- 45. Ionomr Innovations
- 46. Materic
- 47. Pajarito Power
- 48. pH Matter
- 49. Robert Bosch
- 50. Robert Bosch
- 51. Saueressig

Recycling Consortium

52. American Institute of Chemical Engineers and 15 partners

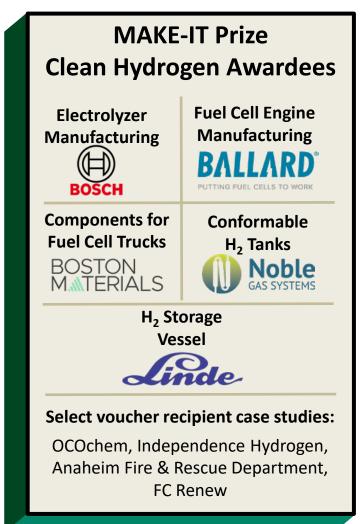
Source: HFTO https://www.energy.gov/eere/fuelcells/bipartisan-infrastructure-law-clean-hydrogen-electrolysis-manufacturing-and-0

U.S. DEPARTMENT OF ENERGY

Recent News!

Department of Energy

Biden-Harris Administration Announces First Projects Receiving Clean Energy Manufacturing Investments in America's Industrial and Energy Communities


April 19, 2024

President Biden's *Investing in America Agenda* Supports New Projects Building Grid Transformers, Manufacturing EV Chargers and Solar Components, and Processing Critical Minerals, Helping Revitalize Local Economies with Clean Energy Jobs

https://www.energy.gov/articles/biden-harris-administration-announces-first-projects-receiving-clean-energy-manufacturing

Qualifying Advanced Energy Product Credit – 48C – Examples of Self-Reported Recipients and Make It Prize Winners – Examples related to Hydrogen

		Organization Name	Credit Allocation	Project Location
	Hydrogen Electrolyzer	Cummins, Inc.	~\$10.6M	Fridley, MN
		Electric Hydrogen Co.	~\$18.3M	Devens, MA
		John Cockerill Hydrogen North America	~\$34.1M	Baytown, TX
		Nel Hydrogen	~\$41M	Plymouth Township, MI
		Topsoe SOEC Productions US Inc	\$135.9M	Chester, VA
	Fuel Cells	Ballard Power Systems	\$54M	Rockwall, TX
		Nuvera Fuel Cells, LLC	\$14.1M	Billerica, MA
		Total	~\$308M	

Press Release: https://www.energy.gov/articles/biden-harris-administration-announces-first-projects-receiving-clean-energy-manufacturing-applicant-self-disclosed-48c-projects-receiving-clean-energy-manufacturing-applicant-self-disclosed-48c-projects-receiving-clean-energy-manufacturing-applicant-self-disclosed-48c-projects-receiving-clean-energy-manufacturing-applicant-self-disclosed-48c-projects-receiving-clean-energy-manufacturing-applicant-self-disclosed-48c-projects-receiving-clean-energy-manufacturing-applicant-self-disclosed-48c-projects-receiving-clean-energy-manufacturing-applicant-self-disclosed-48c-projects-receiving-clean-energy-manufacturing-applicant-self-disclosed-48c-projects-receiving-clean-energy-manufacturing-applicant-self-disclosed-48c-projects-receiving-clean-energy-manufacturing-applicant-self-disclosed-48c-projects-receiving-clean-energy-manufacturing-applicant-self-disclosed-48c-projects-receiving-clean-energy-manufacturing-applicant-self-disclosed-48c-projects-receiving-clean-energy-manufacturing-applicant-self-disclosed-48c-projects-receiving-clean-energy-manufacturing-applicant-self-disclosed-48c-projects-receiving-clean-energy-manufacturing-applicant-self-disclosed-48c-projects-receiving-clean-energy-manufacturing-applicant-self-disclosed-48c-projects-receiving-clean-energy-manufacturing-applicant-self-disclosed-48c-projects-receiving-applicant-self-disclosed-48c-projects-receiving-applicant-self-disclosed-48c-projects-receiving-applicant-self-disclosed-48c-projects-receiving-applicant-self-disclosed-48c-projects-receiving-applicant-self-disclosed-48c-projects-receiving-applicant-self-disclosed-48c-projects-receiving-applicant-self-disclosed-48c-projects-receiving-applicant-self-disclosed-48c-projects-receiving-applicant-self-disclosed-48c-projects-receiving-applicant-self-disclosed-48c-projects-receiving-applicant-s

See MESC for 48C; see OTT for Make It Prize

Qualifying Advanced Energy Project Credit (48C) Program

Department of the Treasury

U.S. Departments of the Treasury and Energy Release Additional Guidance on Inflation Reduction Act Programs to Incentive Manufacturing and Clean Energy Investments in Hard-Hit Coal Communities

April 29, 2024

https://home.treasury.gov/news/press-releases/jy2301?utm_medium=email&utm_source=govdelivery%20--

Up to \$6 billion in tax credit allocations for the second round of allocations of the 48C(e) program.

DOE and Treasury will host a virtual webinar for potential applicants on Thursday, May 16, 2024, at 12:00 PM (ET).

48C – Round 2: Concept Paper Applicant Webinar

<u>https://www.energy.gov/infrastructure/qualifying-advanced-energy-project-credit-48c-program -</u>

REGISTER TODAY!

Roll-to-Roll (R2R) Consortium

Advancing efficient, high-throughput, and high-quality manufacturing processes

National Lab Team

Industry Advisory Board

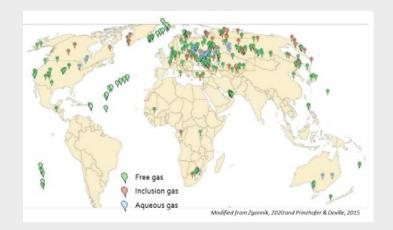
BIL-MNF001, Wed 3:45 in FC Session

Task Areas

- Materials Scale-Up Science
- MEA Fabrication
- Quality Control
- Process Modeling and AI / ML
- Characterization for Mfg Environment
- Technoeconomic Analysis

CRADA Request for Proposals: Open Today!

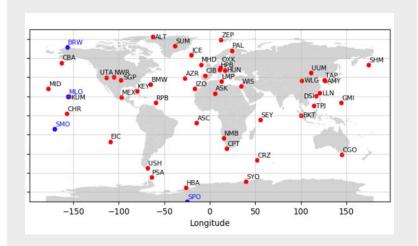
- Collaborative projects with Industry & Labs
- Up to **\$8M** for 5 15 awards
- Concept Papers Due June 3


CRADA: Cooperative Research and Development Agreement http://www.nrel.gov/hydrogen/r2r-crada-call.html

New Activities: Earth, Sky, and In-Between...

Geologic Hydrogen

What is the potential and where? Estimates range from <20 MMT/yr to trillion?



Preliminary estimates of surface observations of hydrogen concentrations greater than 10%

ARPA-E (\$24M), USGS, and others

Climate Science

What is the atmospheric H₂ concentration and potential impact? Sources and sinks?

NOAA Global Cooperative Air Sampling Network: Largest H2 measurement network in the world

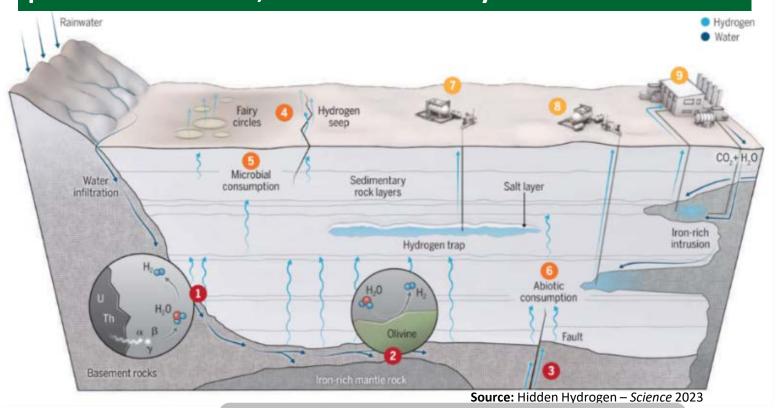
NOAA, HFTO (\$2.2M Interagency Agreement)

Sensors and Monitoring

How to detect ppb-level H₂ and how to monitor and reduce potential releases?

Safety Sensor Testing Apparatus (SSTA) at NREL being upgraded for ppb level detection

New sensor projects launched by HFTO and new efforts coming soon by ARPA-E!


DOE HFTO (~\$8.5M), ARPA-E (NEW- \$20M)

New Efforts – Geologic Hydrogen

Need to address many unknowns: focus on the subsurface

Need fundamental understanding, scalable technologies, production models, economic viability

Mineral Oxidation Example reaction

2Fe²⁺ + 3H₂O

 \rightleftharpoons 2Fe³

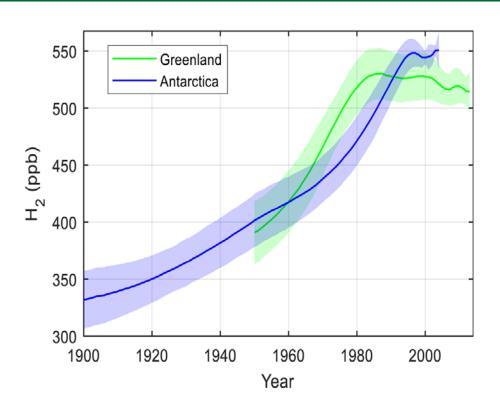
+ 3H₂

Sources: Doug Wicks, Program Director, ARPA-E; Geoffrey Ellis, Research Geologist, US Geological Survey (USGS); Science 2023

ARPA-E awardees: \$24M

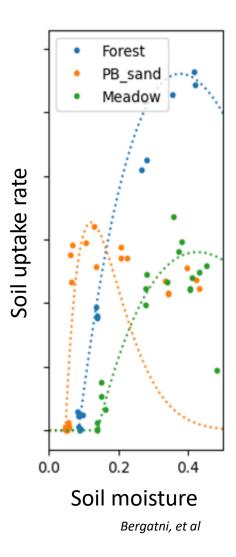
Production of Geologic Hydrogen through Stimulated Mineralogical Processes

Subsurface Engineering for Reservoir Management



Methodology for Life-Cycle Analysis for Geological Hydrogen (GREET) Argonne

Cutting Edge Work – Understanding Hydrogen Releases and Sinks with NOAA


Atmospheric H₂ levels from Greenland and Antarctica in the last century
Steeper increase in recent years (1-2 ppb/year)

Improving our understanding of the H₂ soil sink through observations and modeling

Forests and specific moisture conditions appear to increase H₂ uptake

HFTO funding supports NOAA (~\$2.2M) and parters to improve monitoring, analysis, modeling.

Patterson, et al, https://cp.copernicus.org/articles/19/2535/2023/

Fabien Paulot, Gabrielle Pétron, Andrew M. Crotwell, and Matteo B. Bertagni

New Work – Hydrogen sensors for ppb level detection and emissions data

HFTO is funding new projects on H₂ Sensors for ppb level detection and quantification

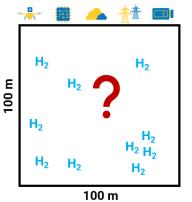
Indrio Technologies Inc.; Palo Alto Research Center Inc.; University of Georgia; Iowa State University; University of Missouri; General Electric; Aerodyne Research Inc.; Solve Technology and Research Inc.; Lawrence Livermore National Laboratory

HyCRed Hydrogen Component Reliability Database

Collects high quality data to improve safety, reduce failure rates and maintenance cost, and inform R&D to enable reduced H2 emissions.

Call to Action: Get Involved!

Share your data with NREL and UMD
(w/ NDA). Email hycred@nrel.gov


Sensor efforts include FOA, SBIR, and TCF projects NDA: Nondisclosure agreement

Contacts:

Dr. Robert Ledoux Program Director

Source: ARPA-E webinar, 4/18/24

Dr. Julia GreenwaldFellow

Due June 7, 9:30 AM

See FOA (Exploratory topics) & ARPA-E website for most up to date information

https://arpa-e-foa.energy.gov/#Foald521a7aa4-b255-4c3b-a211-b128d2a4a0e4

Recent News!

Hydrogen and Fuel Cell Technologies Office

Biden-Harris Administration Announces More Than \$90 Million for Hydrogen Infrastructure

January 30, 2024

Funding will help build a hydrogen corridor from California to Texas, establish fueling infrastructure along Interstate 25 in Colorado

www.energy.gov/eere/fuelcells/articles/biden-harris-administration-announces-623-million-grants-ev-charging-and

Examples of DOT FHWA and EPA Funding

\$90+M from DOT-FHWA Funding for H₂ Stations

North Central Texas Council of Governments \$70M

- 5 MD/HD H₂ fueling stations in TX triangle
- Created H₂ corridor from Southern CA to TX

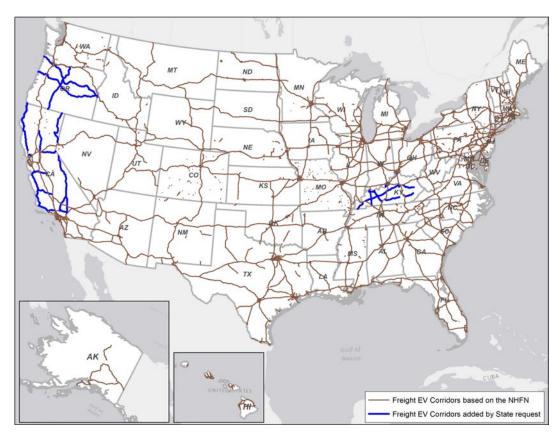
California State University, Los Angeles \$7M

 Transform H₂ Research Fueling Facility into high-capacity, multimodal (light- to heavy-duty) H₂ fueling station

California's Victor Valley Transit Authority \$12M

 Build a H2 fueling station and 6 DC fast charging stations for fleet and public fueling

Colorado State University (CSU) ~\$9M

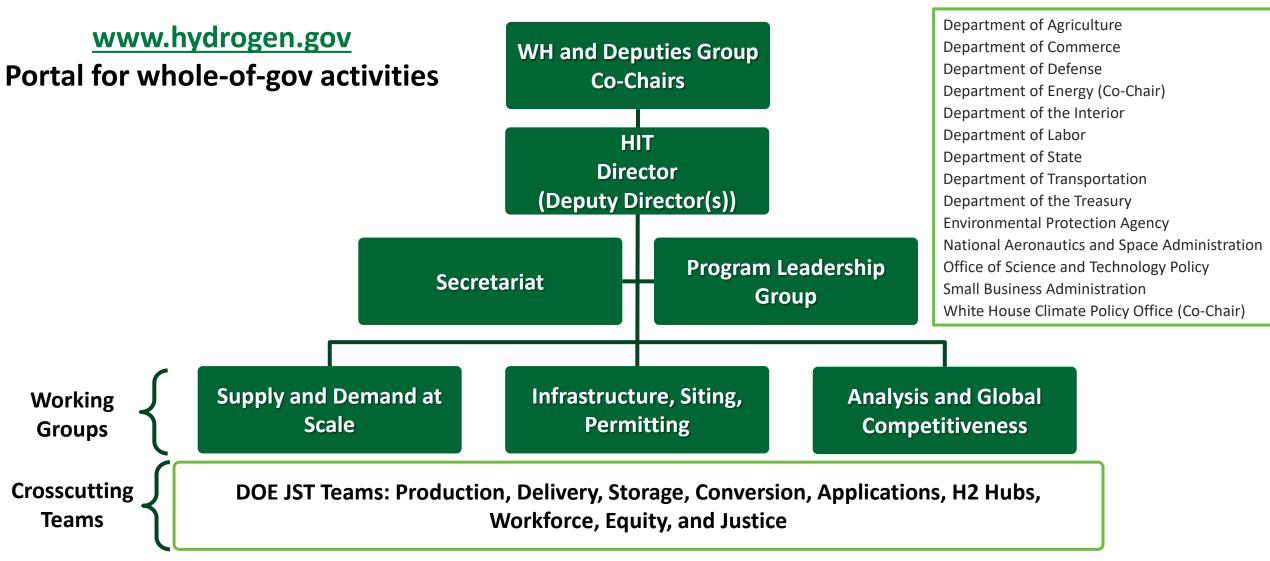

 Build 3 public H₂ fueling stations near CSU campuses in Fort Collins, Denver, and Pueblo for truck fleets and potential vehicles along I-25

EPA Clean Ports Program: \$3B for Grants

At least 25% (\$750M) to be spent in nonattainment areas

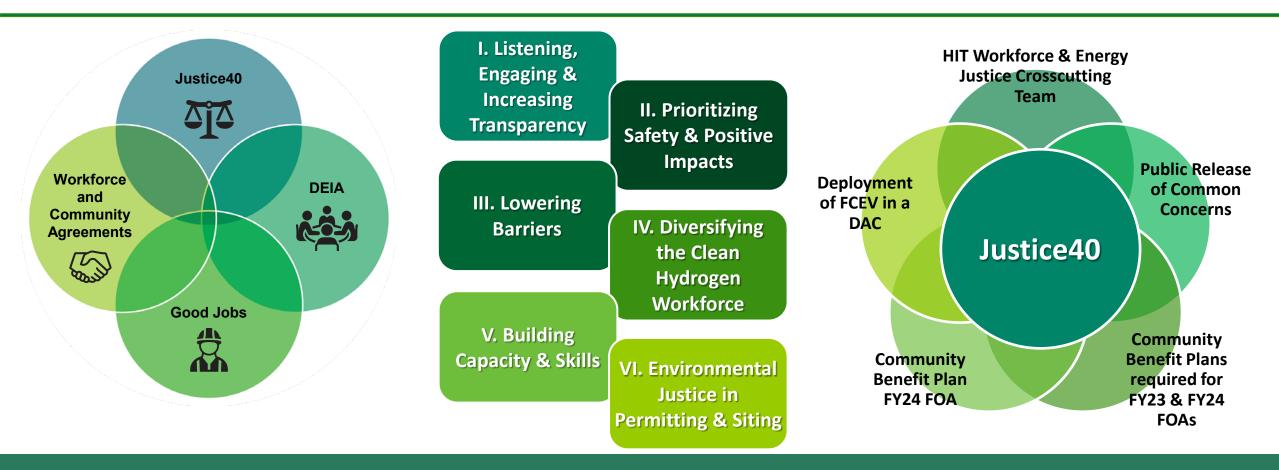
Due before May 28

Federal Highway Administration (FHWA) announced the designation of <u>National EV</u> <u>Freight Corridors</u> – includes H2 stations



https://www.fhwa.dot.gov/environment/alternative fuel corridors/freight ev corridors/

FHWA station & charging in collaboration with Joint Office of DOT, DOE


Hydrogen Interagency Task Force (HIT) across Agencies

JST: Joint Strategy Team. Equity, Energy and Environmental Justice is a crosscutting priority across WGs.

Environmental Justice Initiatives

Draft Responses to Frequently Asked Questions and Common Concerns About Clean Hydrogen

https://www.energy.gov/eere/fuelcells/draft-responses-frequently-asked-questions-and-common-concerns-about-clean-hydrogen

Examples of H₂ Environmental Justice Activities

Internal Coordination

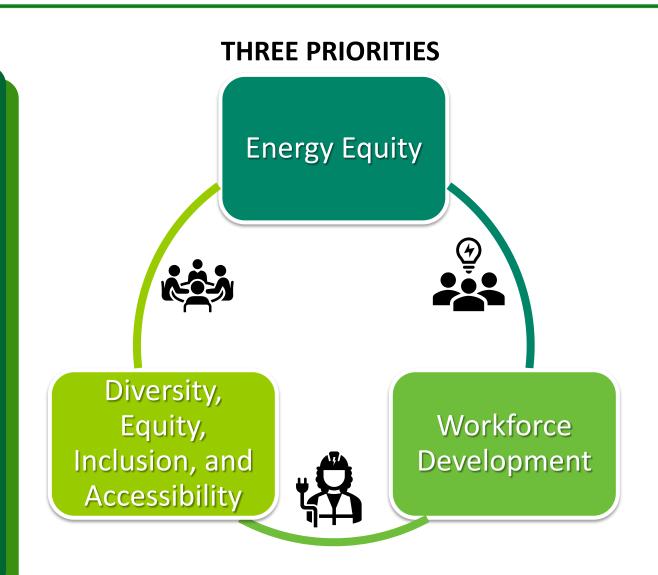
- Community Benefits Plan (CBP)
 Workshops
- Environmental Justice Training at Staff Offsite
- EJ Subcommittee has at least one member from each HFTO subprogram
- BIL reporting & CBP support

External Coordination

- **FY24 FOA:** Equitable Hydrogen Technology Community Engagement
- Harnessing Hydrogen Public Forum
- Participation in EJE's Energy Justice to the People Roadshow
- Draft Common Concerns doc released
- Hydrogen Interagency Taskforce Workforce and Energy Justice Crosscutting team
- EERE HFTO project with CTE for UPS Fuel Cell Delivery Vans in Disadvantaged Community (DAC)
- Planning underway for Eco-H2

R&D Community Benefits Plan Examples – Three Priorities

Diversity, Equity, Inclusion, and Accessibility


 Equitable access to wealth building opportunities (teaming, access to good jobs, business and contracting opportunities, etc.)

Energy Equity

 How research will drive benefits to frontline communities and historically under-resourced groups (DACs)

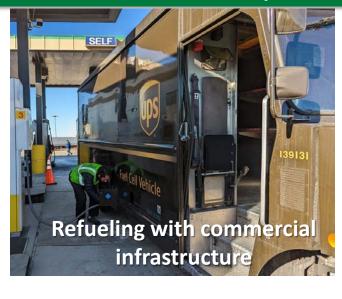
Workforce Development

- Consideration of long-term workforce impacts and opportunities of research
- Create/retain high-quality jobs
- Attract, train, and retain skilled workers

Harnessing Hydrogen for a Just Transition

- Forum to learn about H₂ and community benefits
- Unveiled at Boston Museum of Science and National Environmental Justice Conference
- Publicly released April 22nd!
- Available for free for public use*

https://www.energy.gov/justice/harnessing-hydrogenand-community-benefits-public-forums -


*Free public use enabled through Creative Commons license

Example of DOE-funded Project in a Disadvantaged Community

HFTO Project with CTE for UPS Fuel Cell Delivery Vans and Shell Station in Ontario, CA

Project Ending:

- 15 H2 FC re-powered UPS vans built
- Data collected

Lessons Learned:

- Blueprint for safety and underwriting at depots
- Challenges of re-powered vehicles
- H₂ infrastructure challenges

Special appreciation to Shell Early 2024 Rapid response to station challenges

CTE received AMR award 2023

New Training and Intern Opportunities!

GREETTrain the Trainer

Contact:

greet_trainer@gpisd.net

LEARN, CO-TEACH, EDUCATE

ANL and GPI will train individuals (trainers) with previous Life Cycle Assessment (LCA) experience, excellent verbal communication skills, and specific applications in carbon accounting

Trainer Commitment

Attend in-person & quarterly online workshops Provide on-demand training for at least 2 years

>160 hours / year

Building off successful Geothermal internship program (November 2023)

Office of Energy Efficiency & Renewable Energy

U.S. Department of Energy and U.S. National Science Foundation Announce New Internship Program to Support Growth of Geothermal Energy Workforce

https://www.energy.gov/eere/articles/us-department-energy-and-us-national-sciencefoundation-announce-new-internship

See NSF INTERN at: https://www.nsf.gov/eng/eec/intern.jsp

ANL: Argonne National Lab GPI: Great Plains Institute

More Highlights on Education, Diversity, Equity, Inclusion, and Accessibility

H₂ Education

Register for virtual course now!

Email h2edge@epri.com

Tribal Engagement

NAVAJO TECHNICAL UNIVERSITY

Internships, high-tech equipment offer opportunities in H₂ and fuel cell research

https://discover.lanl.gov/news/1130-ntu-collaboration/ -

Global Collaboration

Supported launch of H2-DEIA at COP28.

New global platform dedicated to advancing

DEIA with IPHE and H2 Council

https://h2-deia.org/

Mapping of International Hydrogen Initiatives and Collaborations Underway

BREAKTHROUGH AGENDA

Priority Actions for International Collaboration — Coordinated through the Hydrogen Breakthrough

Priority International Actions	Participating Initiatives (to date)*	
H.1: Standards & Certification	Coordinating: IPHE (with IEA H2-TCP) Partners include: IRENA, UNIDO	
H.2: Demand Creation & Management	Coordinating: CEM Hydrogen Initiative (w/ RMI) Partners include: First Movers' Coalition, World Economic Forum, Int'l H2 Trade Forum, MI Clean H2 Mission, H2 Global	
H.3: Research & Innovation	Coordinating: Mission Innovation Clean Hydrogen Mission Partners include: IEA H2 TCP	
H.4: Finance & Investment	Coordinating: World Bank and UNIDO	
H.5: Landscape Coordination	Coordinating: H2 Breakthrough Facilitator (hosted by IPHE Secretariat) Partners: Open to all globally focused H2 initiatives	

*Examples shown. Updated periodically by BtA.

Global Collaboration – Certification, Outreach, and STEM

Department of Energy

At COP28, Countries Launch Declaration of Intent on Clean Hydrogen

DECEMBER 6, 2023

Declaration of Intent seeks to work toward mutual recognition of clean hydrogen certification schemes and to help facilitate a global market

Can support local robotics teams through Community Benefits Plans

Students from 190 Countries and Team Hope (refugees) competed in Singapore for Hydrogen Day 2023

Energy Observer H₂
vessel visits DC

Around the world in 7 years!

https://www.energy.gov/eere/fuelcells/articles/hydrogen-fuel-cell-powered-laboratory-vessel-arrives-washington-dc

https://www.energy.gov/articles/cop28-countries-launch-declaration-intent-clean-hydrogen

IPHE Early Career Network

Calling all hydrogen-enthusiast STUDENTS (undergraduate & graduate), POST-DOCS, and EARLY CAREER PROFESSIONALS worldwide!

Connect with peers, mentors, scientific researchers, industry professionals, and policymakers!

Networking • Career Development • Webinars Research • Policy • Leadership • Science

500+ members from 38 countries

www.iphe.net/early-career-chapter

2023-2024 Leadership Team

Call to Action: Join the Center for Hydrogen Safety

H2 Safety Panel – Established 2003

>600

Safety reviews

300+

Global safety presentations

Combined years of experience

First responders trained

Hydrogen tools portal

Connecting a Global Community

Over 100 members from industry, government, and academia—and growing!

New Hydrogen Safety Credential!

Based on H₂ safety e-courses, including:

- Properties & Hazards
- Safety Planning
- System Operation
- Inspection & Maintenance

Year in Review Highlights

\$7B to launch the Regional Clean H₂ Hubs

\$750M BIL FOA to advance Clean H, RD&D

FIRST Global Non-Profit -STEM Opportunity with H₂ Theme for Hydrogen Day – Students from 190 countries competed in Singapore

Clean H₂ Production Tax Credit (45V)

\$750M for 52 projects to reduce cost of clean H₂

HBCU Clean Energy Education Prize

\$10M for H₂ combustion engine innovation

R2R Consortium announced

Multi-Year **Program Plan**

June 2023

Aug 2023

Oct 2023

Dec 2023

Feb 2024

April 2024

May 2024

U.S. National Clean Hydrogen Strategy and

National Clean H₂ Strategy & Roadmap

Hydrogen Interagency Taskforce (HIT)

launches

\$48M to advance clean H₂ technologies

IPHE launches H2-DEIA

\$7B for America's first Regional Clean H₂ Hubs

Justice Week

\$59M to advance **National Clean** 2023 H₂ Strategy

H₂ Earthshot report at COP28

> >\$90M for H₂ corridor from **Texas to California**

\$10M for H₂ direct ironreduction demonstration

Energy Observer laboratory vessel visits **Washington DC**

Phase II Hydrogen **Shot Incubator Prize**

Summary of HIT Key Activities and Next Steps

Completed – 2023

- ✓ Launched *National Strategy*
- ✓ Launched HIT
- ✓ \$7B for 7 Hubs
- ✓ NPRMs Tax Credits (45V), GHGs
- ✓ Demand-side Consortium selection
- ✓ Pipeline Safety R&D Forum
- ✓ Initial USG Demand Mapping
- ✓ Joint Workshops, Annual Merit Review
- ✓ New projects (\$8M) sensors for leakage, initiated climate studies
- ✓ Initial EJ listening sessions
- ✓ New RD&D FOAs across value chain (>\$1B)

Key Activities – 2024

- All Hubs awarded*; Map to potential demand for offtake
- Fueling corridors and ports funding for deployments
- Rule activities; Guidance, final rules, verification strategy. Cost updates, analysis on exports, resource/water use, supply chain
- New manufacturing projects; Recovery & Recycling consortium
- Identify regulatory requirements and responsibilities across local, state, and federal levels and gaps; infrastructure RD&D needs
- New awards for best practices in siting, permitting, safety
- New projects with communities on lessons learned, best practices
- Develop strategies with industry for responsible deployment
- Develop metrics for impacts on EJ communities
- Initiate workforce strategy, assessment of skill gaps

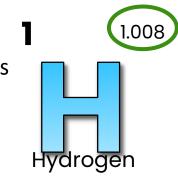
Continue RDD&D priorities as outlined in National Strategy and MYPP

^{*}Hub selections announced in 2023; final awards to be completed in 2024

Resources and Opportunities for Engagement

11 - 12 JUNE 2024

RONALD REAGAN INT. TRADE CENTER, WASHINGTON D.C.


Key Publications

www.hydrogen.energy.gov

Hydrogen and Fuel Cells Day October 8

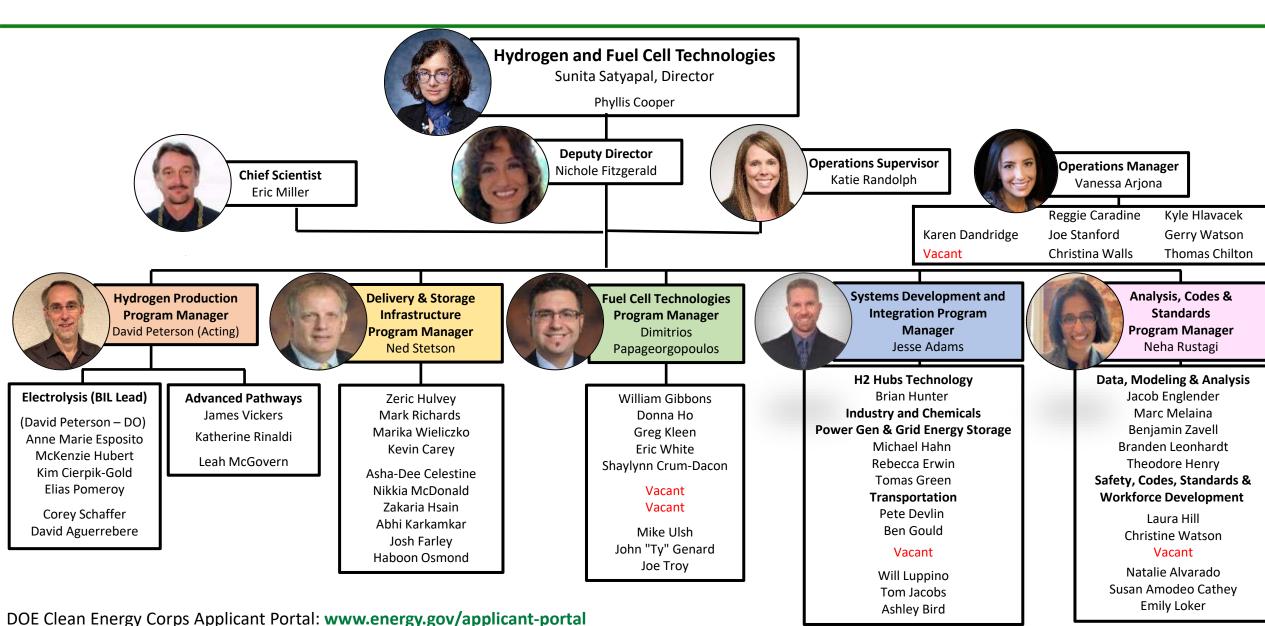
 Held on hydrogen's very own atomic weight-day

Join Monthly
H2IQ Hour Webinars

Download H2IQ For Free

Visit H2tools.Org For Hydrogen Safety And Lessons Learned

https://h2tools.org/



Sign up to receive hydrogen and fuel cell updates

www.energy.gov/eere/fuelcells/fuel-cell-technologies-office-newsletter

Learn more at: energy.gov/eere/fuelcells AND www.hydrogen.energy.gov

Acknowledgements: Hydrogen and Fuel Cell Technologies Office

Thank you

EERE Career Homepage

Dr. Sunita Satyapal

Director, Hydrogen and Fuel Cell Technologies Office
Coordinator, DOE Hydrogen Program
U.S. Department of Energy
and
Director, Hydrogen Interagency Taskforce

Also on **Linked** in

EERE Career Newsletter

www.energy.gov/fuelcells www.hydrogen.energy.gov

Acknowledging our Collaboration Network

Collaboration and coordination to accelerate progress and advance environmental justice

Project Partners

14 National Labs

~190 Companies

>100 Universities

Cross-Office work with Multiple DOE Offices

EERE (WETO, IEDO, SETO, BETO, AMMTO, WPTO, VTO, BTO; FECM; NE; OCED; SC; ARPA-E; MESC; OTT; LPO; OE; EJE; OIE; IA; and more
Joint Strategy Team

DOE Crosscutting Initiatives

Transportation, Industrial
Decarb., Manufacturing, Clean
Fuels & Products, Grid
Modernization, Cybersecurity,
AI/ML, Critical Materials, EMNs

Interagency Collaboration & Coordination

Including *DOC, DOD, DOT, DHS, EPA, NASA, NSF, State, Treasury, and more (Hydrogen Interagency Taskforce since 2024)*

International Collaboration

IEA, IPHE, CEM, HEM, MI, IRENA, CH-JU, NALS, Bilaterals, and many more

Other External Partners

Regional & National
Associations and States
FCHEA, NASEO and many
more

Labor groups, Tribes, and EJ
Communities

Public-private partnerships 21 CTP, USDRIVE, etc.

HFTO Project Partners: Labs, Universities, and Industry

3M Company	GKN Hydrogen*	NeoGraf Solutions LLC	Treadstone Technologies, Inc.
Air Products and Chemicals	Hertha Metals	New Jersey Clean Cities Coalition*	University of Alabama
Ames Laboratory	Hexagon R&D LLC	Nexceris, LLC	University of Buffalo
Argonne National Laboratory	Hornblower Energy	Nikola Corporation	University of California, Irvine
Arizona State University	Hy-Performance Materials Testing, LLC	North Carolina State University	University of California, San Diego
Army GVSC	Idaho National Laboratory	Northwestern University	University of Colorado, Boulder
Brookhaven National Laboratory	Indiana University	Oak Ridge Institute for Science & Education	University of Delaware
Cal State LA University Auxiliary Services	Indrio Technologies	Oak Ridge National Laboratory	University of Florida
California Institute of Technology*	Iowa State University	Oak Ridge Associated Universities	University of Georgia
Caterpillar Inc.	John Hopkins University	OCOchem, Inc.*	University of Hawaii
Center for Transportation and the Environment	Komatsu America*	Oregon State University	University of Illinois at Urbana-Champaign
Clemson University	Leland Stanford Junior University*	Orlando Utilities Commission	University of Kentucky
Collaborative Composite Solutions Corporation	Lawrence Berkeley National Laboratory	Pacific Northwest National Laboratory	University of Michigan
Colorado School of Mines	Lawrence Livermore National Laboratory	Palo Alto Research Center, Inc.	University of Missouri
Constellation Corporation	Linde Engineering North America*	Pennsylvania State University	University of Oregon
Cummins Inc.	Los Alamos National Laboratory	Plug Power Inc.	University of South Carolina
Daimler Trucks North America	Louisiana State University	Rensselaer Polytechnic Institute	University of Southern California
DOT National Highway Traffic Safety Administration	MAHLE Powertrain	Rice University	University of Tennessee-Knoxville
Eaton Corporation	Massachusetts Institute of Technology	RTX Corporation	University of Tennessee, Space Institute
Electric Power Research Institute Inc	Missouri University of Science & Technology	San Juan College	University of Texas, El Paso
Electricore Inc.	Molten Industries, Inc.	Saint-Gobain Ceramics and Plastics, Inc.	University of Toledo
Ford Motor Company	Montana State University	Sandia National Laboratories	University of Virginia
Frontier Energy, Inc.	National Aeronautics and Space Administration	Savannah River National Laboratory	University of Wisconsin*
FuelCell Energy, Inc.	National Energy Technology Laboratory	Shell	Washington State University
Gas Technology Institute	National Institute of Standards and Technology	SLAC National Accelerator Laboratory	Washington University in St. Louis
General Motors LLC	National Oceanic and Atmospheric Administration	Southern Company Services	West Virginia University
General Electric Company	National Renewable Energy Laboratory	Strategic Analysis, Inc.	Yale University*
Giner ELX, Inc.	NEL Hydrogen, Inc.	SUNY University at Buffalo*	
			*Awards subject to possibilitions

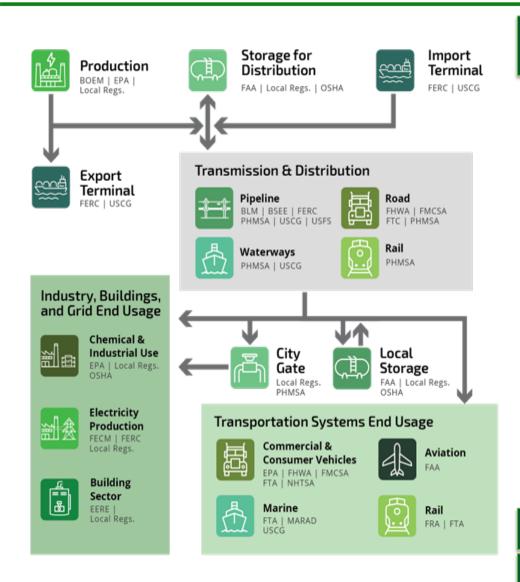
*Awards subject to negotiations

DOE Hydrogen Program and Related FOAs/Lab Calls

	Office	FY	FOA / Lab Call	~Funds \$M	Relevant Focus Areas
	HFTO	23	Bipartisan Infrastructure Law: Clean Hydrogen Electrolysis, Manufacturing, and Recycling FOA	\$750	Clean H2 Electrolysis Program & Clean H2 Manufacturing & Recycling
JOET, FECM EERE	HFTO	23	HFTO FOA in Support of Hydrogen Shot	\$47	H2 storage & delivery R&D with LH & carriers; HD fuel cell RD&D
	HFTO	23	Clean Hydrogen Electrolysis Program HFTO Lab Call	\$30	Advanced Materials, Components, & Interfaces for Electrolyzers
	HFTO	24	HFTO FOA to Advance the National Clean Hydrogen Strategy	\$59	Fueling Components; Station of the Future; Port Demo; Permitting & Safety; Community Engagement
	HFTO	24	HFTO Lab Call for Development of Advanced Materials & Systems for H2 Infrastructure & Fuel Cell Technology	\$11	Material-based H2 Carrier Demos w/ Industry; Innovative Concepts in non-PFSA High Temp PEM Fuel Cells for HD Transportation
	НЕТО	24	R2R Consortium to Advance Electrolyzer and Fuel Cell Manufacturing	\$8	Materials synthesis processes; R2R coating process development; QC technique development; advanced materials characterization; electrochemical testing; advanced computing
	IEDO	23	Industrial Efficiency and Decarbonization Office Multi-Topic FOA	\$156	Includes H2 as a low-carbon fuel, and for decarbonizing industrial processes
	IEDO	24	Energy and Emissions Intensive Industries FOA	\$83	Includes Integration of Clean H ₂ in the Industrial Sector (Pre-Feed Studies)
	SETO	23	Solar-thermal Fuels and Thermal Energy Storage via Concentrated Solar-thermal (CST) Energy FOA	\$30	Includes RD&D to enable cost-effective solar fuel production such as hydrogen using CST-generated heat potentially supported by green electricity
	JOET	24	EV Charging and Alternative Fueling	\$623	Includes >\$90M for Hydrogen Infrastructure
	FECM	23	Fossil Energy Based Production, Storage, Transport and Utilization of H ₂ Approaching Net-Zero or Net-Negative Carbon Emissions	\$32	H2 production, storage, transport, & utilization
	FECM	24	Carbon Negative Shot Pilots	\$100	Pilot-Scale Testing of Advanced CO ₂ Removal Technologies; Includes Funding for Projects to Produce Carbon-Negative H ₂ from Biomass

DOE Hydrogen Program and Related FOAs/Lab Calls

		Office	FY	FOA / Lab Call	~Funds \$M	Relevant Focus Areas	
OCED, MESC, OTT		OCED, OTT	23	Bipartisan Infrastructure Law TCF: Collaborative Alignment for Critical Technology Industries Lab Call	\$8	Topics on clean H2 and long duration energy storage	
		OCED, MESC, IEDO	23	Industrial Decarbonization and Emissions Reduction Demonstration-to-Deployment FOA	\$6,000	Installations and retrofit demonstrations including H2-based industrial decarbonization	
		OCED, OTT	24	The Manufacture of Advanced Key Energy Infrastructure Technologies (MAKE IT) Prize	\$30	Includes a track to establish a domestic supply chain for components deemed critical for the commercialization of clean energy technologies, including components related to hydrogen	
	ירט, ואו	OTT w/ OCED, FECM, EERE	24	Voucher Program through Technology Commercialization Fund	\$32	Provides commercialization support to organizations that have a role in bringing innovative energy technologies, such as hydrogen and fuel cell technologies, to market nation-wide	
	5	MESC	23	Bipartisan Infrastructure Law: Advanced Energy Manufacturing and Recycling Grant Program FOA	\$350	New or expanded facilities, including for H2 & fuel cell components	
		MESC	23	Modeling, Mapping, and Analysis Consortium (MMAC)	\$2	Includes \$300K for Electrolyzer Analysis	
SC ARPA-E		SC/BES	23	Science Foundations for Energy Earthshots FOA	\$150	Supporting Energy Earthshot goals including H2 Shot	
	ARPA-E	SC/BES	23	Energy Earthshot Research Centers Lab Call	\$200	Supporting Energy Earthshot goals including H2 Shot	
		ARPA-E	24	Production of Geologic Hydrogen Through Stimulated Mineralogical Processes	\$20	Technologies that stimulate H_2 production from mineral deposits found in the subsurface, including understanding of H_2 geochemical reactions and how to enhance or control the rate of H_2 production	


Hydrogen Related IDP FOA Selections- New from OCED \$6B Selections!

	Project Title	Lead Organization	Federal Cost Share
Iron & Steel	H ₂ -Ready Electric Melting Furnace Iron and Steel Retrofit	Cleveland-Cliffs Steel Corporation	\$500M
20/	H ₂ -Fueled Zero Emissions Steel Making	SSAB	\$500M
Chemicals & Refining	Novel CO₂ Utilization for Electric Vehicle Battery Chemical Production	The Dow Chemical Company	\$95M
	Star e-Methanol	Orsted P2X US Holding LLC	\$100M
	Sustainable Ethylene from CO ₂ Utilization with Renewable Energy (SECURE)	T.EN Stone & Webster Process Technology, Inc.	\$200M
	Baytown Olefins Plant Carbon Reduction Project	Exxon Mobile Corporation	\$332M
Aluminum & Metals	Low Carbon SmartMelt Furnace Conversion	con SmartMelt Furnace Conversion Constellium Rolled Products, Ravenswood	\$75M
	Nextcase-Next Generation Aluminum Mini Mill	Golden Aluminum Inc.	\$22M
	Zero Waste Advanced Aluminum Recycling	Real Alloy Recycling, LLC	\$67M
adapted from OCED IDP appr		TOTAL	~\$1.9B

Chilton, et al, HFTO; adapted from OCED IDP announcements

https://www.energy.gov/articles/biden-harris-administration-announces-6-billion-transform-americas-industrial-sector-

Key USG Focus Areas for Cross-Agency Collaboration and Coordination

Enable National Goals: 10 MMT/yr supply and use by 2030, 20 MMT/yr by 2040, 50 MMT/yr by 2050

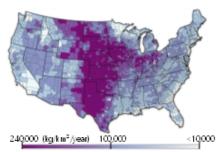
Supply and Demand at Scale

- Enabling large scale production and demand creation
- Financing, incentives, and compliance tools for commercial scale up
- Metrics for deployment and USG as offtaker
- Supply chains and resiliency (critical materials, strategic reserve)
- R&D to accelerate cost reductions and end use commercialization (JST interface)

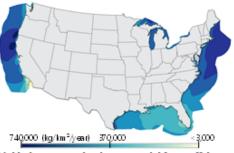
Infrastructure, Siting, Permitting

- Siting, permitting, pipelines, storage, and infrastructure
- Harmonized codes and standards
- Interoperability and global standardization
- Safety, emissions (including secondary), sensors, risk mitigation, environmental impact
- Environmental review and best practices (NEPA, etc.)
- Pipeline and blending test facilities

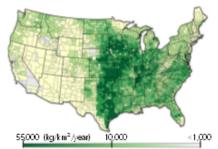
Analysis and Global Competitiveness

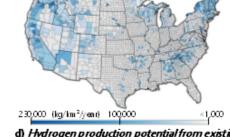

- National strategy and commercial liftoff analysis
- Impacts and gap assessments (technoeconomic analysis, incentives, resource/water availability, emissions, jobs, manufacturing, etc.)
- Intellectual property and global landscape assessment
- Export market analysis
- Systems integration and optimization

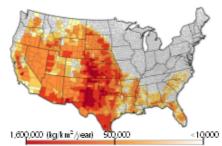
Clean Hydrogen Production, Delivery, Storage, Conversion, Applications, H2 Hubs

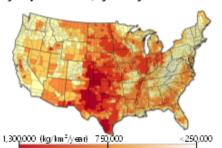

Workforce, Equity, and Justice

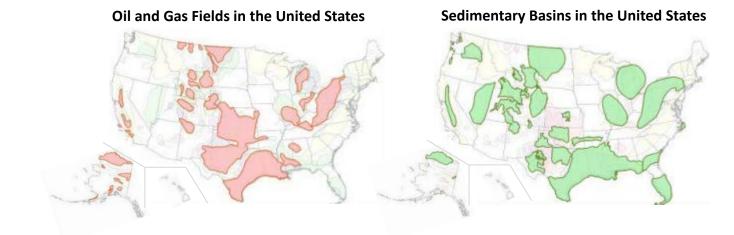
National Clean Hydrogen Strategy and Roadmap

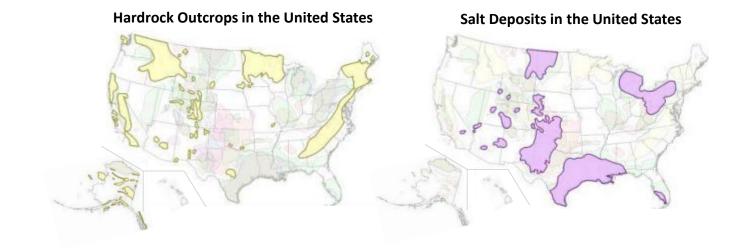

Potential Supply Resources and Underground Storage


a) Hydrogen production potential from onshore wind resources, by county land area


b) Hydrogen production potential from offshore wind resources, by area

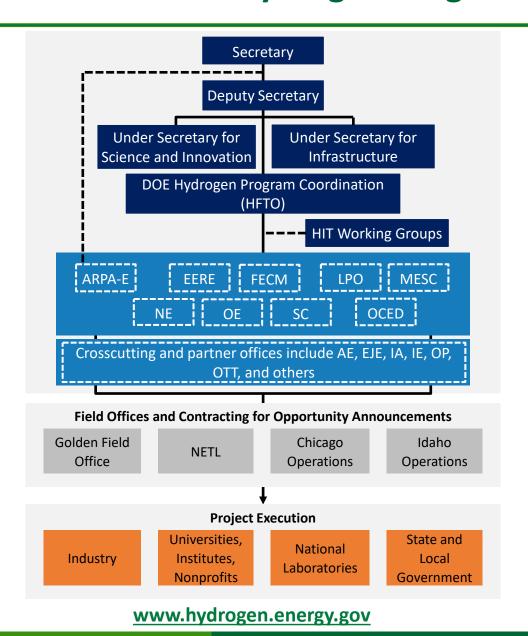

c) Hydrogen production potential from solid biomass resources, by county land area


d) Hydrogen production potential from existing hydropower assets, by county land area



e) Hydrogen production potential from concentrated solar power, by county land area

f) Hydrogen production potential from utilityscale PV, by county land area



Source: SHASTA, NETL, funded by FECM

Source: NREL, Lab analysis, National Strategy

The U.S. DOE Hydrogen Program – Coordinated across Offices

EERE Hydrogen

Feedstocks:

Renewables and Water

Technologies:

- Electrolysis Low- and High-Temperature
- Advanced Water Splitting Solar / High-Temp Thermochemical, Photoelectrochemical
- Biological Approaches

FECM Hydrogen

Feedstocks:

Fossil Fuels – Coal* and Natural Gas

Technologies:

- Gasification, Reforming, Pyrolysis
- Advanced Approaches Co-firing and Modular Systems
- Natural Gas to Solid Carbon plus Hydrogen

Areas of Collaboration

Reversible Fuel Cells, Biomass, Municipal Solid Waste, Plastics Polygeneration including Co-Gasification with Biomass

High-Temperature Electrolysis, System Integration

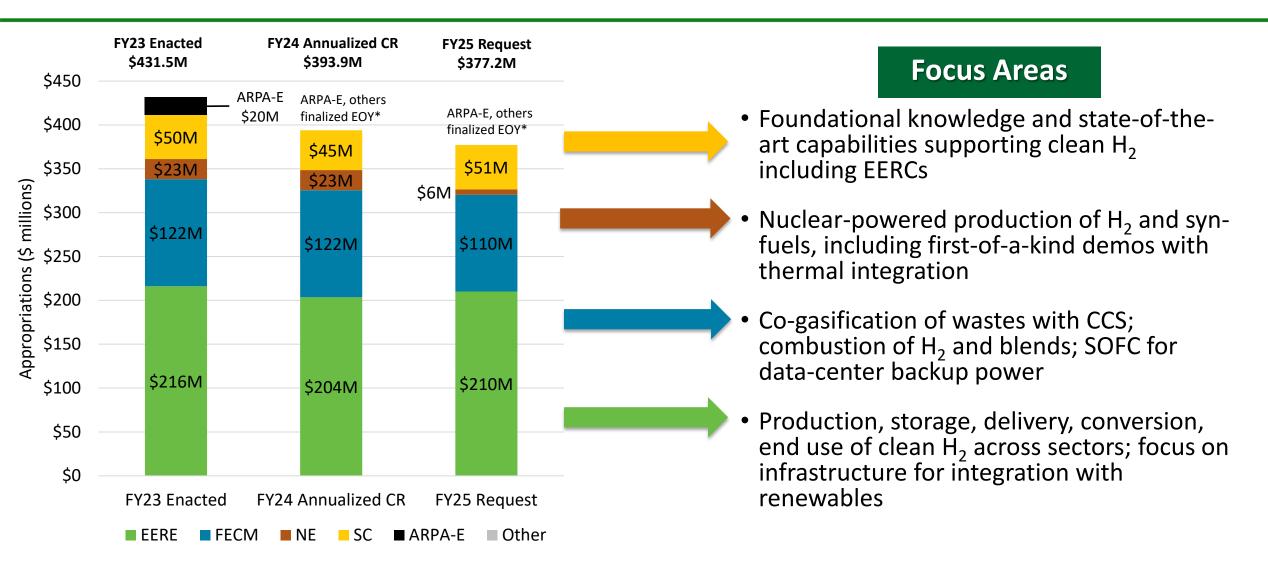
Feedstocks:

Nuclear Fuels and Water

Technologies:

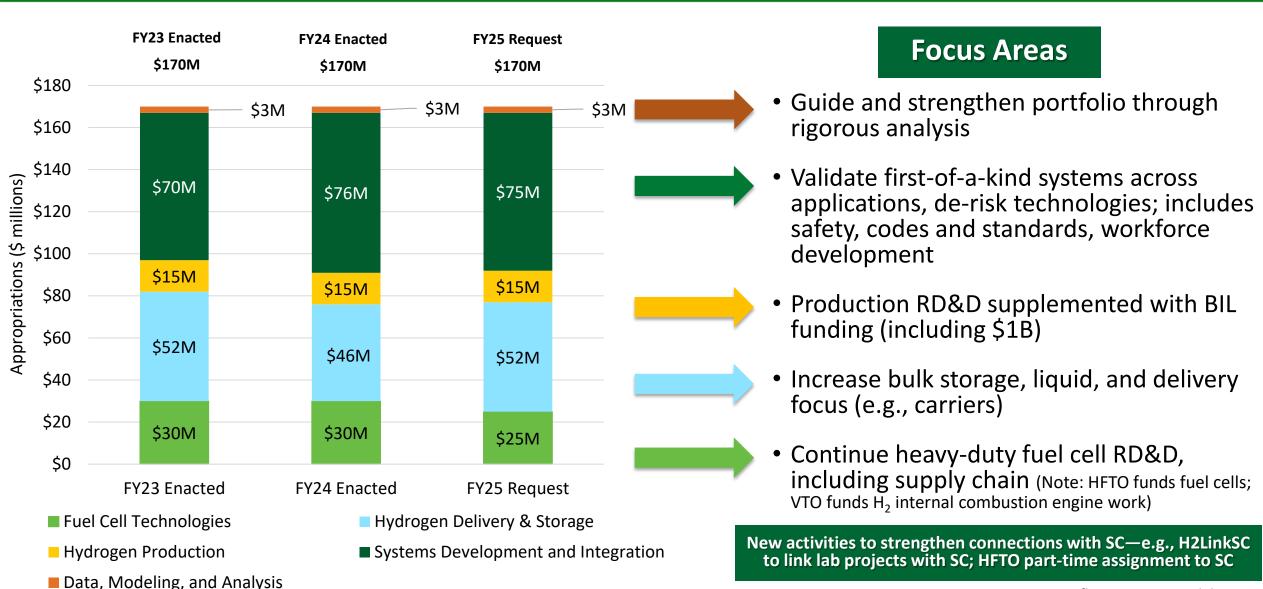
- Risk Assessment & Licensing, Thermal Delivery
- Advanced Nuclear Reactors
- System Integration and Controls LWRs and Advanced Reactors

NE Hydrogen


Crosscutting R&D Offices: Office of Science (SC) and ARPA-E Fundamental Science and Advanced Innovative Concepts

Foundational research and innovation; user facilities and tools, materials and chemical processes (e.g., catalysis, separations), artificial intelligence/machine learning, databases and validation, high risk – high impact R&D, and other crosscutting activities.

OCED (H2 Hubs), MESC, OTT, LPO, OP, EJE, IE, IA, and more


^{*}Waste coal, other waste

DOE Hydrogen Program Fiscal Year (FY) Funding across Offices

DOE Hydrogen Program coordinated through HFTO. Source: https://www.energy.gov/sites/default/files/2023-03/doe-fy2024-budget-volume-2-crosscutting-v3.pdf
*Final to be updated end of year (EOY), e.g., ARPA-E, SC funding is determined annually based on programs/selections. Annual funding only, excludes BIL funding and new offices (e.g., OCED)

Hydrogen and Fuel Cell Technologies Office Budget

Note: Appropriations reflect Congressional direction

Financing to Enable Deployment at Scale – H₂ Examples

Loan Programs Office (LPO) Builds The Bridge to Bankability & Market Catalyzation

LPO announced loan guarantee conditional commitments for 2 clean hydrogen projects

ADVANCED CLEAN hydrogen production and storage facility capable of providing long-term seasonal energy storage.

DELTA, UTAH

FINANCED BY U.S. DEPARTMENT OF ENERGY

H2

First-of-its-kind hydrogen production and storage facility capable of providing long-term seasonal energy storage.

LOAN GUARANTEE: CONDITIONAL COMMITMENT

\$1.04B for the first-ever commercial-scale project to deploy methane pyrolysis technology. Will enable 1,000 construction jobs and 75 operations jobs.

(December 2021)

\$504.4M for large-scale hydrogen energy storage, 220 MW electrolysis and turbine. Will enable up to 400 construction jobs and 25 operations jobs.

(April 2022)

Let's talk about your project. Call or email for a no-cost pre-application consultation: (202) 287-5900 or LPO@hq.doe.gov

Examples of Tax Credits and Notices of Proposed Rulemakings

Clean Hydrogen Production Tax Credit 45V

EPA announced the MDHD rule for Zero Emissions Vehicles

More protective emissions standards for criteria pollutants and greenhouse gases for light-duty and Class 2B and 3 medium-duty vehicles that will phase-in between 2027-2032 which includes FCEVs.

EPA Clean Air Act Section 111 Carbon Pollution Standards for Power Plants

Emissions Guidelines for existing coal fired boilers Emissions Standards for new combustion turbines

- https://www.epa.gov/regulations-emissions-vehicles-and-engines/final-rule-multi-pollutant-emissionsstandards-model
- https://www.epa.gov/system/files/documents/2024-04/cps-presentation-final-rule-4-24-2024.pdf

Examples of Additional Tax Credits

30C – Fueling Infrastructure

30D & 45W – Vehicles

45Y/48E – Clean Electricity Production

40B – Biofuel Production

45Z – Clean Fuel Production

48C – Manufacturing Tax Credit

NHTSA announced **NPRM**

Proposes the establishment of two new Federal

Motor Vehicle Safety Standards for vehicles that use
hydrogen as a fuel source

NPRM: Notice for Proposed Rulemaking

https://www.nhtsa.gov/document/nprm-fuel-system-integrity-hydrogen-vehicles -

View more at: https://www.federalregister.gov/documents/2023/12/26/2023-28359/section-45v-credit-for-production-of-clean-hydrogen-section-48a15-election-to-treat-clean-hydrogen-