

Accelerating Progress from the Hydrogen Shot to Hydrogen Hubs

Moderated by Eric L. Miller, Chief Scientist, Hydrogen and Fuel Cell Technologies Office

Hydrogen Program Annual Merit Review and Peer Evaluation Meeting, May 6, 2024, Arlington VA

HAPPENING

Research, Development, Demonstration, & Deployment – And Beyond!

Our Distinguished Panelists!

Jennifer Arrigo

Director Science and Energy Crosscuts Office of the Under Secretary for Science and Innovation

Jason Marcinkoski

Program Manager Integrated Energy Systems Office of Nuclear Energy

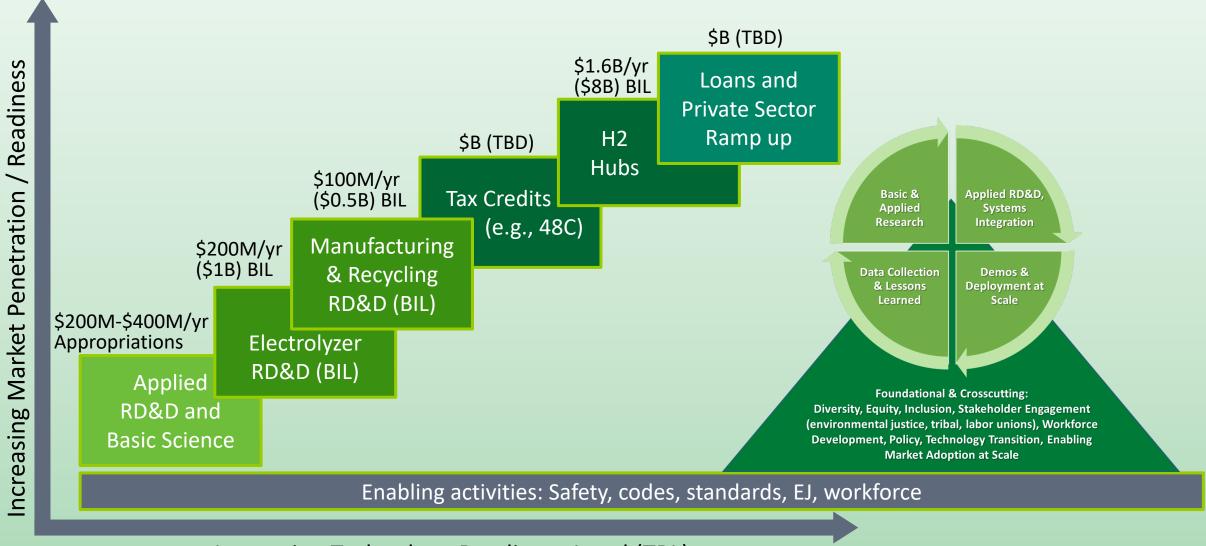
Gail McLean

Division Director, Chemical Sciences, Geosciences and Biosciences Office of Basic Energy Sciences Office of Science

Bob Schrecengost

Division Director Hydrogen with Carbon Management Office of Fossil Energy and Carbon Management

Nichole Fitzgerald


Deputy Director Hydrogen and Fuel Cell Technologies Office Office of Energy Efficiency and Renewable Energy

Crystal Farmer

Hydrogen Hubs Program Manager Office of Clean Energy Demonstrations

DOE's Comprehensive Hydrogen Portfolio

Increasing Technology Readiness Level (TRL)

Office of the UNDER SECRETARY FOR SCIENCE & INNOVATION

Intro to Science and Energy Crosscuts and the Energy Earthshot Initiative

Jennifer Arrigo,

Director, Science and Energy Crosscuts Office of the Under Secretary for Science and Innovation

Office of the Under Secretary of Science and Innovation (S4)

Crosscut Team Mission: Spur innovation and accelerate progress towards 2030, 2035 and 2050 climate and energy goals through fully integrated science and applied energy research, development, demonstration, and deployment (RDD&D) within and across key missioncritical domains in DOE.

- Science and Technology areas that are critical to achieve a fully transformed and decarbonized energy economy
- Address identified needs for research and development (R&D) breakthroughs that will lead to transformational technologies deployed at scale
 - Innovation today = Infrastructure tomorrow
- Unique DOE capabilities, leadership, and mission space
- Develop and execute integrated goal-driven RD&D plans aligned to DOE mission.

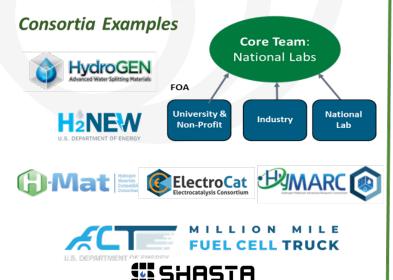
Energy Earthshots™ Portfolio

The frontiers of the clean energy transition

Goal: The Hydrogen Shot[™] seeks to reduce the cost of clean hydrogen by 80% to \$1 per 1 kilogram in 1 decade.

1 Kilogram

1 Dollar


1 Decade

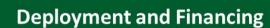
Key RDD&D Efforts Targeting Goals

Research and Development

Basic and applied research through individual projects and consortia

Basic science user facilities, theory, modeling

- Analysis and tools
- Safety, codes & standards
- Manufacturing
- Workforce development


Technology Integration, Validation, Demos

1st of a kind demonstrations and systems integration to de-risk deployments *Examples:*

Renewables and nuclear to H_2 , 15 delivery trucks in disadvantaged area, 3 Super Truck projects, data center, fueling for passenger ferry, energy storage, H_2 for steel

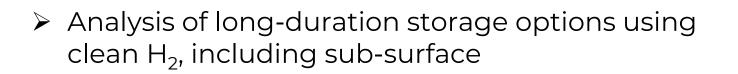
H2 Hubs, loan guarantee program, workforce development

Example:

\$7 billon for 7 hubs: Renewables, fossil w/CCS, nuclear; multiple end-uses

Regional Clean-Hydrogen Hubs					
	90	9			
* 88		金			
1					
Clean-H ₂ Producers	Clean-H ₂ Infrastructure	Clean-H ₂			

2 new loan guarantee projects (\$1.5B total) on pyrolysis and large-scale electrolysis, H_2 energy storage and power generation



Coordination across Earthshots EXAMPLES

Storage"

earthshots

Clean Fuels & Products™

Carbon Negative™

- Floating > Offshore Wind[™] > Investigation of H₂ as an emerging viable option for energy transport from offshore option for energy transport from offshore wind
 - > Assessments of the role of affordable clean H_2 in diverse carbon negative technology options

Office of Science, Basic Energy Sciences: Accelerating Progress from Hydrogen Shot to Hydrogen Hubs

Gail McLean

Chemical Sciences, Geosciences and Biosciences Division Director Basic Energy Sciences Office of Science

Energy.gov/science

U.S. DEPARTMENT OF ENERGY Science

Our Mission:

Deliver scientific discoveries and major scientific tools to transform our understanding of nature and advance the energy, economic, and national security of the United States.

Office of

More than **34,000 r**esearchers supported at more than **300** institutions and **17** DOE national laboratories

> Steward **10** of the 17 DOE national laboratories

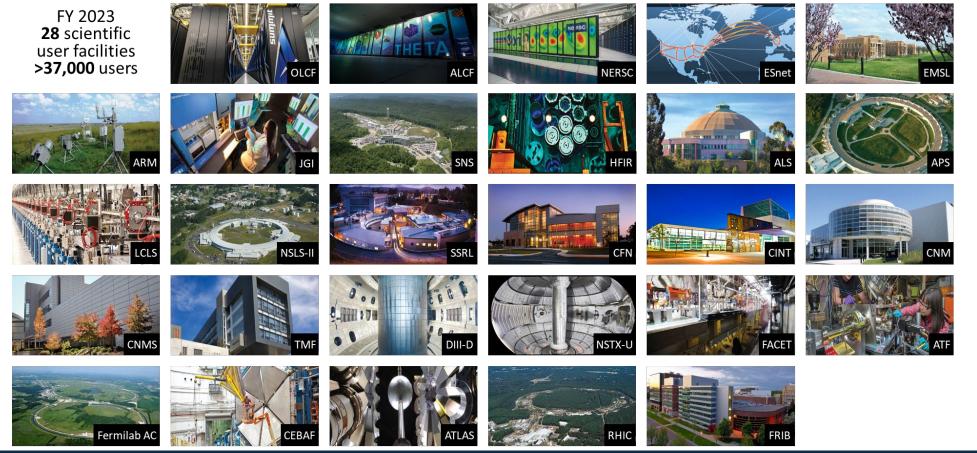
FUNDING

More than **37,000** users of 28 Office of Science scientific user facilities

\$8.1B (FY 23 enacted)

DEPARTMENT OF Office of Science

Energy.gov/science


Office of Science Research Portfolio

Advanced Scientific Computing Research	• Delivering world leading computational and networking capabilities to extend the frontiers of science and technology		
Basic Energy Sciences	 Understanding, predicting, and ultimately controlling matter and energy flow at the electronic, atomic, and molecular levels 		
Biological and Environmental Research	 Understanding complex biological, earth, and environmental systems 		
Fusion Energy Sciences	 Supporting the development of a fusion energy source and supporting research in plasma science 		
High Energy Physics	 Understanding how the universe works at its most fundamental level 		
Nuclear Physics	 Discovering, exploring, and understanding all forms of nuclear matter 		
Isotope R&D and Production	 Supporting isotope research, development, production, processing and distribution to meet the needs of the Nation 		
Accelerator R&D and Production	• Supporting new technologies for use in SC's scientific facilities and in commercial products		

SC User Facilities Have Important Roles in Hydrogen Research

- Advanced Scientific Computing Research leadership class computers across disciplines to accelerate transformative progress
- Biological and Environmental Research user facilities bring bioanalytical instrumentation, genomic sequencing, and systems biology tools for innovative approaches for biological hydrogen generation
- Basic Energy Sciences light, neutron, and nanoscience facilities provide advanced synthesis and characterization to enable next-generation energy technologies

Collaboration between SC-BES User facilities and hydrogen-related consortia have resulted in joint publications in peer reviewed journals.

SC Energy Earthshots Initiative

Joint initiative between BES, ASCR, and BER to address key basic research challenges in support of the DOE Energy Earthshots stretch goals for the first 6 DOE Energy Earthshots.

Two complementary programs:

Energy Earthshot Research Centers (EERCs): Multi-disciplinary, multi-institutional teams led by DOE laboratories focused on fundamental research that addresses key research challenges for the Energy Earthshots.

Scientific Foundations for Energy Earthshots: Small group awards led by academic or private sector institutions focused on use-inspired foundational science addressing knowledge gaps limiting achievement of Earthshot goals.

SC announced 29 awards in FY 2023, 11 EERCs (recommended ~\$4.8 M/yr/EERC) and 18 scientific foundations grants (~\$2-5 M/award over 3 years).

EERC and Science Foundation Awards on Hydrogen

CIWE · Center for Ionomer-based Water Electrolysis, Lawrence Berkeley National Laboratory, Adam Weber

Partners – Univ of California Berkeley, Univ of Oregon, Colorado School of Mines, Texas Tech, ORNL, Univ of California Merced, Univ of California Irvine Analyzes structure, evolution, and chemistry of ion-conducting polymers (ionomers) for low-temperature electrolysis for hydrogen generation

PEHPr · Center for the Science of Plasma-Enhanced Hydrogen Production, Princeton Plasma

Physics Laboratory, Yiguang Ju

Partner – Princeton Univ

Focuses on basic understanding of energy flow and chemistry in plasmas and plasma-surface interactions as a foundation for efficient plasma-mediated catalytic processes for low-cost electrified hydrogen production.

Proton and Ion Management in Bipolar-Membrane-Based Electrochemical Systems, University of Pennsylvania, Thomas Mallouk Partners: Univ of Oregon, Univ of California Berkeley, Florida International Univ, LBNL Investigates the fundamental reactions of water and the transport of ions in bipolar membranes and related electrochemical systems

EERC and Science Foundation Awards on Hydrogen

Molecular and Atomic EngineeRing of Interfacial Electrocatalytic Environments (MARIE), University of Minnesota

Twin Cities, Kelsey Stoerzinger

Partners: Univ of Minnesota Morris, Univ of Oregon, Queen's University

Understand and design the local reaction environment at an atomically-precise solid surface (active site) by functionalizing it with designer molecules, potentially advancing electrochemical conversion of hydrogen & CO₂

Atomic Level Compositional Complexity for Electrocatalysis (Atomic-C2E), Georgia State University, Gangli Wang

Partners: Carnegie Mellon Univ, Georgia Institute of Technology, ORNL, Univ of Utah Integrate fundamental electrochemistry, ab initio quantum chemical and multi-scale simulations, and materials chemistry to develop a mechanistic understanding of the CO2 reduction reaction (CO2RR) and the limiting step/s during water electrolysis in the O2 evolution reaction (OER).

BES EFRCs: Hydrogen-Related Research

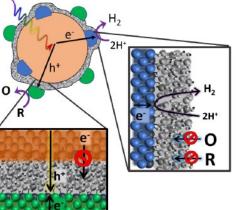
Hydrogen in Energy and Information Sciences (HEISs), Northwestern Univ, Sossina Haile

Understand hydrogen transport in inorganic solids of earth-abundant elements and its transfer along and across interfaces within such materials (all charge states of the element: H+ (proton), H0 (atom), and H- (hydride ion))

Center for Electrochemical Dynamics and Reactions on Surfaces (CEDARS), North Carolina

A&T State Univ, Dhananjay Kumar

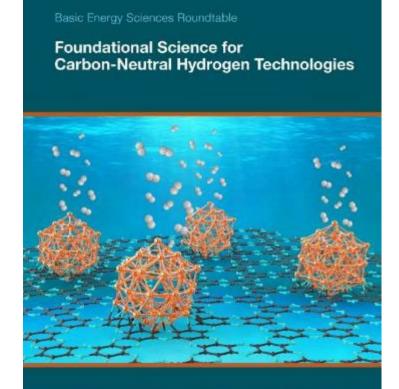
Understand electron and proton transfer process and surface bond formation and dissociation during the hydrogen production from water splitting.


Catalyst Design for Decarbonization Center (CD4DC), Univ of Chicago, Laura Gagliardi

Discover and develop reticular metal-organic framework materials as catalysts for the decarbonization energy transition, including superior hydrogen transfer catalysis.

Ensembles of Photosynthetic Nanoreactors (EPN), University of

California Irvine, Shane Ardo


Understand, predict, and control the activity, selectivity, and stability of solar water splitting nanoreactors in isolation and as ensembles for solar-to-hydrogen conversion.

BES Roundtable: Priority Research Opportunities to Advance Foundational Science *for Carbon-Neutral Hydrogen Technologies*

Priority Research Opportunities:

- Discover and Control Materials and Chemical
 Processes to Revolutionize Electrolysis Systems
- Manipulate Hydrogen Interactions to Harness the Full Potential of Hydrogen as an Energy Carrier
- Elucidate the Structure, Evolution, and Chemistry of Complex Interfaces for Energy and Atom Efficiency
- Understand and Limit Degradation Processes to Enhance the Durability of Hydrogen Systems

Transformative research for carbon-neutral hydrogen production, chemical- and materials-based hydrogen storage, and utilization for hydrogen technologies

https://science.osti.gov/bes/Community-Resources/Reports

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

HFTO & EERE: Clean Hydrogen from Renewable Resources

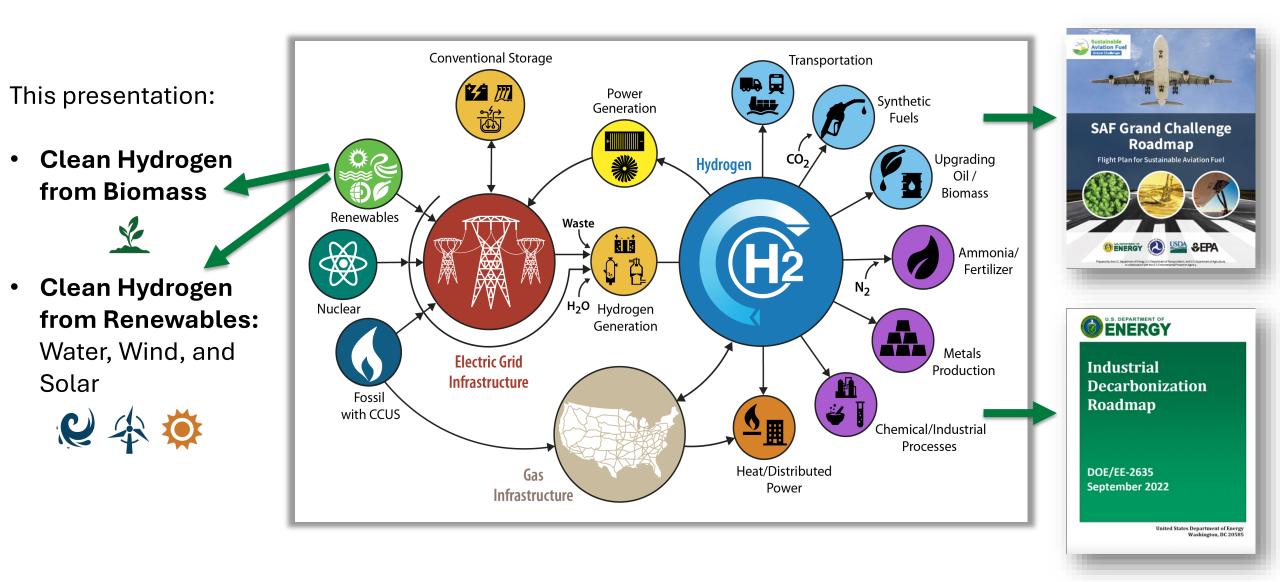
Nichole Fitzgerald

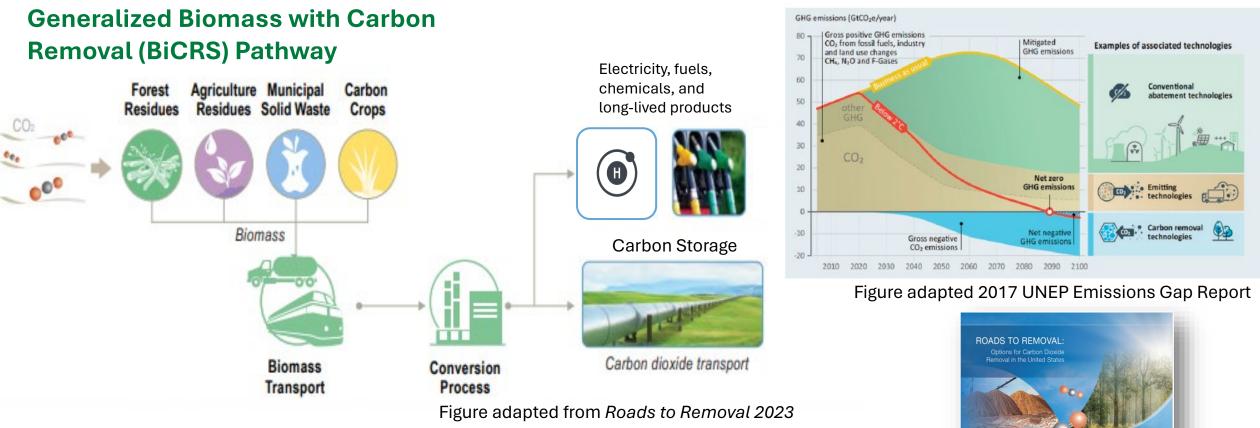
Deputy Director, Hydrogen and Fuel Cell Technologies Office Office of Energy Efficiency and Renewable Energy

This is a Historic Time for HFTO and EERE

Energy Efficiency and Renewable Energy (EERE)

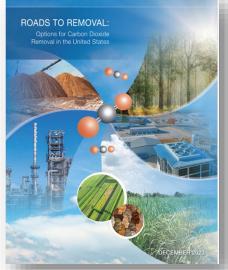
The EERE Mission: accelerate RD&D to equitably transition America to net-zero emissions by 2050, and ensure the clean energy economy benefits all Americans...


The HFTO Mission: RD&D to enable affordable clean hydrogen and fuel cell technologies for a sustainable, resilient, and equitable net-zero emissions economy.


President Biden Signs the Bipartisan Infrastructure Bill into law on November 15, 2021. Photo Credit: Kenny Holston/Getty Images

EERE collaborates to achieve ambitious goals in decarbonization, including hydrogen production and use

EERE Clean Hydrogen Mission & Portfolio



Clean Hydrogen Can Be Produced From Biomass

A Key Finding from Roads to Removal:

BiCRS pathways that produce H_2 are favorable for maximizing CO_2 removal at low net cost per tonne CO_2 due to high CO_2 removal per ton of biomass and revenue streams from the sale of H_2

Clean Hydrogen from Renewable Electrolysis

Levelized costs of hydrogen (in 2022\$) produced from current PEM electrolyzer technology

Scenario Based on Electricity Source	Capacity Factor <i>(%)</i>	Electricity Price (¢/kWh)	Electrolyzer Installed Capital Cost (2022\$/kW)		
			\$1,500	\$2,000	\$2,500
			Levelized H ₂ Production Cost (2022\$/kg)		
Grid – Average Scenario	97%	8.3¢	\$6.80	\$7.50	\$8.20
Renewable Electricity Scenarios					
Hydropower	50%	3.4¢	\$5.50	\$6.70	\$7.90
Land-Based Wind (Class 1)	51%	2.9¢	\$5.20	\$6.40	\$7.50
Optimized Hybrid Wind-PV	74%	3.3¢	\$4.40	\$5.20	\$6.00

*Co-location is critical to achieving low-cost renewable electricity

DOE Hydrogen Program Record "Clean Hydrogen Production Cost Scenarios with PEM Electrolyzer Technology" 2024

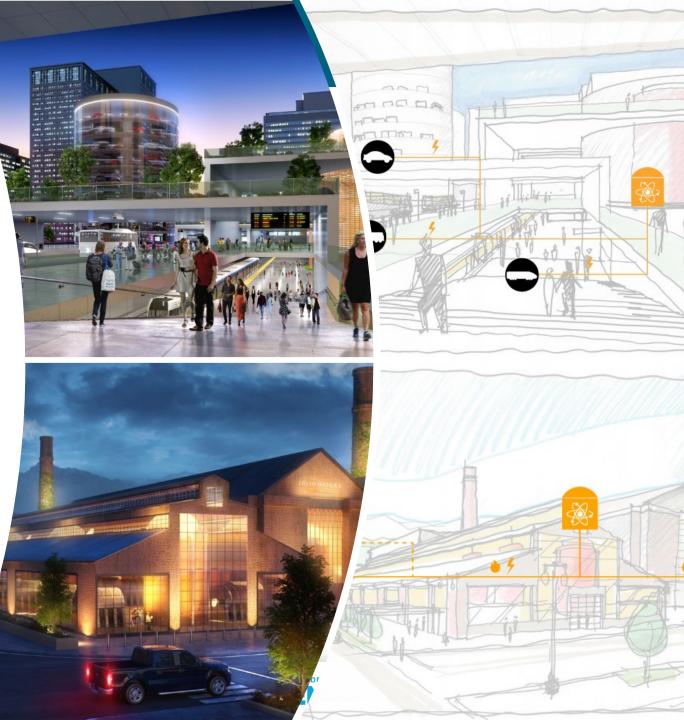
Lowering the cost of electrolyzer technologies while integrating with co-located renewable electricity production will be key to achieving BIL and H₂ Shot goals

GreenHEART Project

- Green Hydrogen Economy and Renewable Technologies (GreenHEART) integrates EERE technologies- wind, water, solar, and electrolysis
- Explores increased efficiency and reduced capital costs through co-location
- Identify best siting locations when considering regional resources (e.g., wind, solar, H₂ storage, water, etc.)
- Provide alternative path to decarbonization for hard-to-abate industries

Check out the GreenHEART presentation on Wednesday at noon (SDI001 Track) **Vision**: Develop a national roadmap and reference designs for a purposebuilt, <u>off-grid</u>, <u>GW-scale</u> hybrid energy system, tightly-coupled with electrolytic hydrogen production, colocated with industry end uses, that can accelerate the path to decarbonization

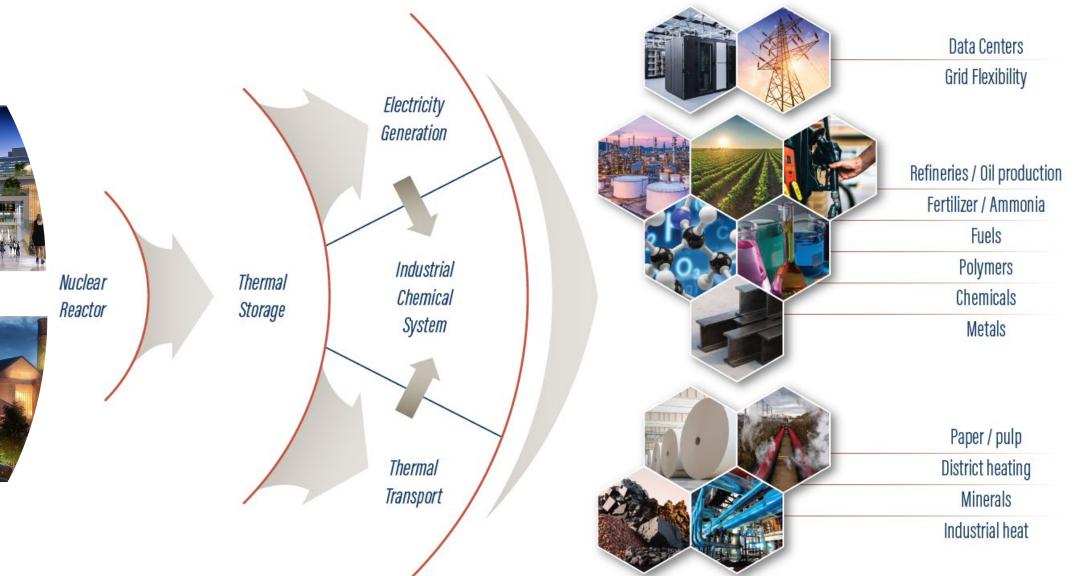
Nuclear Integrated Energy Systems


Jason Marcinkoski

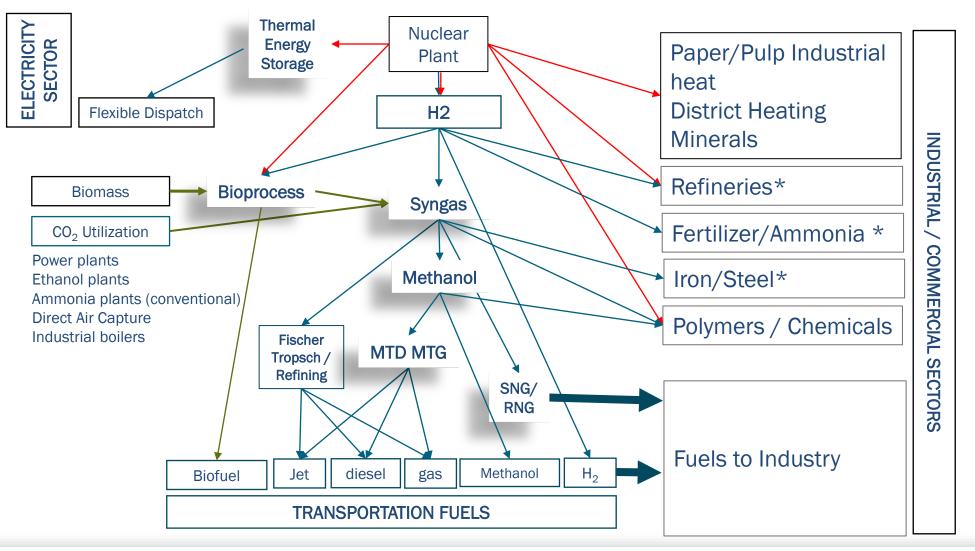
Program Manager, Integrated Energy Systems Office of Nuclear Energy

Nuclear Reimagined

(images from thirdway)


- Liquid coolants enable low pressure cooling systems. (e.g. molten salt, liquid metal)
- Higher temperature reactors enable more efficient and broader industrial use, as well as dry cooling. (e.g. molten salt, liquid metal, high temperature gas)
- Fast reactors can be technically capable of making their own fuel inside the reactor core, and burning high-level waste.
- Passive cooling and reactivity control enable walk-away safety.
- Smaller Emergency Planning Zone allows close proximity to industrial applications
- High power density results in low land-use and low embodied emissions.
- High availability and reliability
 high capacity factor / good economics.
- 200 GW new nuclear expected by 2050 (DOE Nuclear Liftoff Report).

The Future Landscape for Nuclear Energy Systems

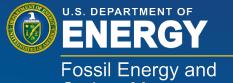


Advanced Nuclear Energy Pathways by Sector

Future Nuclear Energy Currencies are Chemical Feedstocks (Syngas, FT liquids, Methanol, H2)

* significant additional electricity use not shown to simplify diagram

The Office of Nuclear Energy is Preparing to Power Large-scale Electrolysis up to 1,000 MW



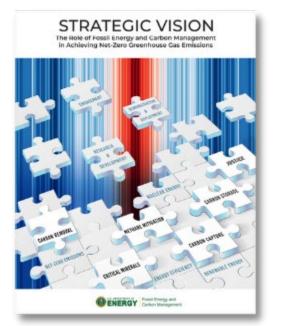
1-2 MWe

Hazards, PRAs, human factors, full-scope simulation for 100, 500, 1000 MW,

Fossil Energy and Carbon Management

FECM: Hydrogen Program

Bob Schrecengost Division Director Hydrogen with Carbon Management Office of Fossil Energy and Carbon Management


Fossil Energy and Carbon Management

FECM Role in Clean Hydrogen/Energy Earthshots

Focus is on clean hydrogen production from fossil resources, waste (e.g., plastics), and sustainable biomass, along with CCUS, to achieve net-zero carbon hydrogen at \$1/kg H₂, power generation/energy storage using reversible solid oxide cells and/or turbines, hydrogen transport, and large-scale/geological hydrogen storage.

Carbon Management Approaches toward Deep Decarbonization

FECM Strategic Vision

Read FECM's Entire Strategic Vision

by Scanning the Code Above

Justice, Labor, and Engagement

Technologies that I ead to Sustainable

Energy Resources

Generation

Industry

Reforming

Supporting '

ortatic

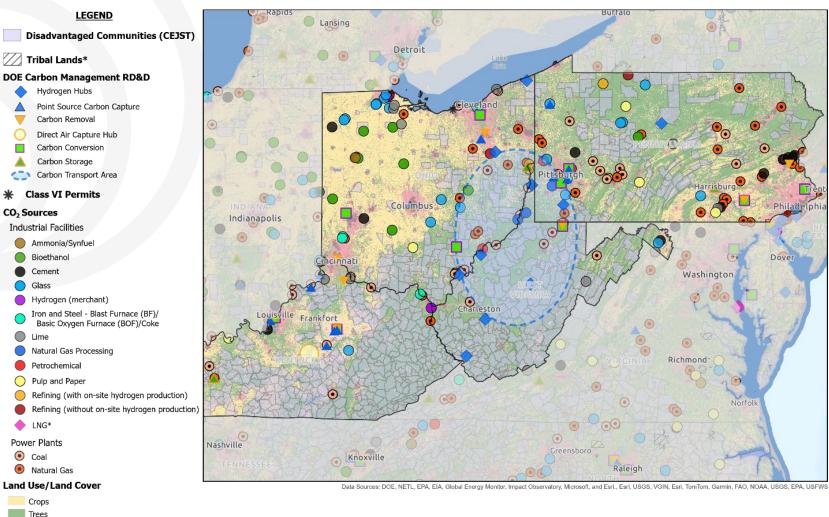
Clean Hydrogen Ph

Electro

Hydrogen Hubs Selected

Nuclear

^{enewables}


Announced Hubs are Under Negotiation

Regional Clean Hydrogen Hubs | Department of Energy

Residen.

Appalachian Hub-Adjacent Industries

egional Clean Hydrogen Hubs | Department of Energy

* Not within highlighted region, but visible on map

Seasonally Flooded Areas

Built Area Rangeland

Water

Appalachian Hub-Adjacent FECM Projects

Point Source Carbon Capture Industrial Sources | Power Sources

\$5M for University of Kentucky to lead small-pilot testing of carbon capture at the Nucor Steel Gallatin Plant
 \$4M for Wood Environment & Infrastructure Solutions to lead a FEED study for capturing CO₂ from a petrochemical plant
 \$6M for a FEED study for capturing CO₂ from LG&E-KU's Cane Run Power Plant Unit 7

Hydrogen with Carbon Management Hydrogen Fuel | Gasification | Solid Oxide Fuel Cells & Gas Turbines

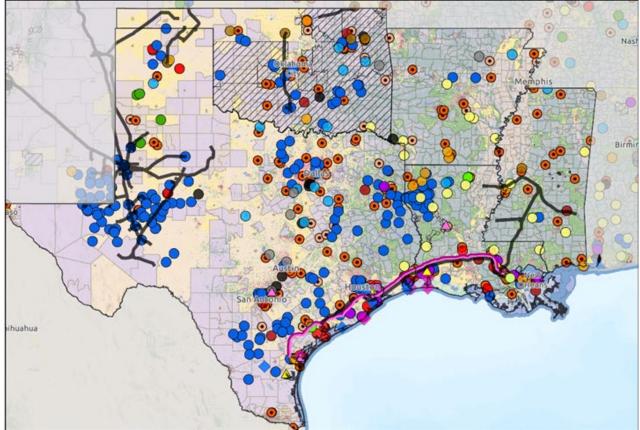
- \$18M to CONSOL Energy, Inc. to Design Development and System Integration Design Study for an Advanced Pressurized Fluidized Bed Combustion Power Plant with Carbon Capture
- \$11M to Pennsylvania State University (PSU) for Improving Turbine Efficiencies Through Heat Transfer and Aerodynamic Research in the Steady Thermal Aero Research Turbine (START)
- \$9M to PSU for Advancing Turbine Technologies for Relevant Inlet Temperature Profiles in the Steady Thermal Aero Research Turbine (START) Lab
- > Appalachian Hydrogen Hub*

Carbon Dioxide Removal Direct Air Capture with Storage

\$3M to University of Kentucky to determine the feasibility of a distributed direct air capture hub that is powered by solar and biomass energy sources, and stores the carbon dioxide in a depleted natural gas field

Carbon Transport and Storage Monitoring, Verification, Accounting, & Assessment of Long-Term Storage | Storage Infrastructure Demonstration | Accelerating Regional Initiatives | CarbonSAFE

\$11M to Batelle, Carbon Storage Complex Feasibility for Commercial Development in Paradise, Kentucky – CarbonSAFE Phase II


\$23.7M, Batelle Memorial Institute, Regional Initiative to Accelerate CCUS Deployment in Midwestern and Northeastern USA

Gulf Coast Hub-Adjacent Industries

LEGEND

Data Sources: DOE, NETL, EPA, EIA, Global Energy Monitor, CONANP, Esri, TomTom, Garmin, FAO, NOAA, USGS, EPA, USFWS, Impact Observatory, Microsoft, and Esri., Esri, USGS

Gulf Coast Hub-Adjacent FECM Projects

Point Source Carbon Capture Industrial Sources | Power Sources

- > \$6M for a FEED study for capturing CO2 from hydrogen production at Air Liquide's La Porte facility
- > A total of \$4M for Linde / Phillips 66 to lead pre-FEED studies for capturing CO2 from hydrogen production at Linde's facilities in Port Arthur and Sweeny and Air Liquide's Rodeo Plant
- > \$5M for FEED/pre-FEED studies for carbon capture at CEMEX's New Braunfels Balcones Cement Plant
- > \$4M for a FEED study for carbon capture at ArcelorMittal's hot briquetted iron facility
- > A total of \$14M for FEED studies for carbon capture at Calpine's Deer Park Energy Center and Cleco Power's Madison Power Plant Unit 3

Hydrogen with Carbon Management Hydrogen Fuel | Gasification | Solid Oxide Fuel Cells & Gas Turbines

- > \$6M Dastur International, INC,
- \$1.5M Praxair, Inc. Pre-FEED
- > \$1.5M Linde Inc. Pre-FEED
- Gulf Coast Hydrogen Hub*

Carbon Transport and Storage Monitoring, Verification, Accounting, & Assessment of Long-Term Storage | Storage Infrastructure Demonstration | Accelerating Regional Initiatives | CarbonSAFE

 \$12M to Port of Corpus Christi Authority, Coastal Bend Carbon Management Project: CarbonSAFE Phase II
 \$9M to Port of Corpus Christi Authority, CarbonSAFE Phase II – Storage Complex Feasibility: Coastal Bend Offshore Carbon Storage

\$48M to Projeo Corporation, The Phoenix Project: Demonstration of the feasibility of the Safe, Reliable Conversion of a Mature Oilfield for Dedicated CO2 Storage, Block 31 Unit, Permian Basin

>\$1.4M to The University of Texas at Austin, Integrated CCS Pre-Feasibility in the Northwest Gulf of Mexico

University Training & Research (UTR) Awardees

Prairie View A&M, Texas State University, University of Texas, Rio Grande Valley, Oklahoma Statue University, University of Texas (Dallas), University of Texas (El Paso), Southern University and A&M College system, Texas A&M Engineering Experiment Stations, University of North Texas, University of Texas (San Antonio), University of Texas (Arlington)

THE OFFICE OF CLEAN ENERGY DEMONSTRATIONS

Regional Clean Hydrogen Hubs

Crystal Farmer Hydrogen Hubs Program Manager Office of Clean Energy Demonstrations

OCED Mission

Deliver clean energy technology demonstration projects at scale in partnership with the private sector to accelerate deployment, market adoption, and the equitable transition to a decarbonized energy system.

Whole of Government Approach to Clean Hydrogen

U.S. National Clean Hydrogen Strategy and Roadmap

Clean Hydrogen Standard

Hydrogen Shot (\$1/kg by 2031)

H2Hubs Demand-Side Support Initiative

IRA tax incentives

Clean Hydrogen Pathways to Commercial Lift-Off Report

Hydrogen Interagency Task Force (HIT)

a collaboration among 11+ U.S. federal agencies to further advance a whole-ofgovernment approach to executing the national clean hydrogen strategy

Additional DOE funding: Clean H2 Electrolysis Clean H2 Manufacturing and Recycling (additional \$1.5B)

U.S. National Clean Hydrogen Strategy and Roadmap

Enablers

Good Jobs and Workforce Development

Safety, codes and standards

Work with other agencies to accelerate market lift off

Policies and incentives

Stimulating private sector investment

Energy and environmental justice

Selected Regional Clean Hydrogen Hubs

Pacific Northwest Hydrogen Hub

California Hydrogen Hub

Alliance for Renewable Clean Hydrogen Energy Systems (ARCHES) Heartland Hydrogen Hub

0

Midwest ° ° Hydrogen Hub Midwest Alliance for Clean Hydrogen (MachH2)

Gulf Coast Hydrogen Hub Appalachian Hydrogen Hub Appalachian Regional Clean Hydrogen Hub (ARCH2) Mid-Atlantic Hydrogen Hub

Mid-Atlantic Clean Hydrogen Hub (MACH2)

Proposed H2 Facility

80

Selected H2Hubs

Pacific Northwest Hydrogen Hub Hub: PNW H2

Project Overview

Prime Applicant: Pacific Northwest Hydrogen Association

Locations: Montana, Oregon, and Washington

Federal Cost Share: **Up to \$1 Billion*** Production

Electrolysis

Connective Infrastructure

End Uses

- Hydrogen pipeline
- Hydrogen refueling stations
- Medium Duty/Heavy Duty trucking, transit buses, mining vehicles
- Ports
- Peaking plants / generators
- Refineries
- Data centers

*Pending negotiations

Mid-Atlantic Hydrogen Hub Hub: Mid-Atlantic Clean Hydrogen Hub (MACH2)

Project Overview

Prime Applicant: Mid-Atlantic Clean Hydrogen Hub, Inc.

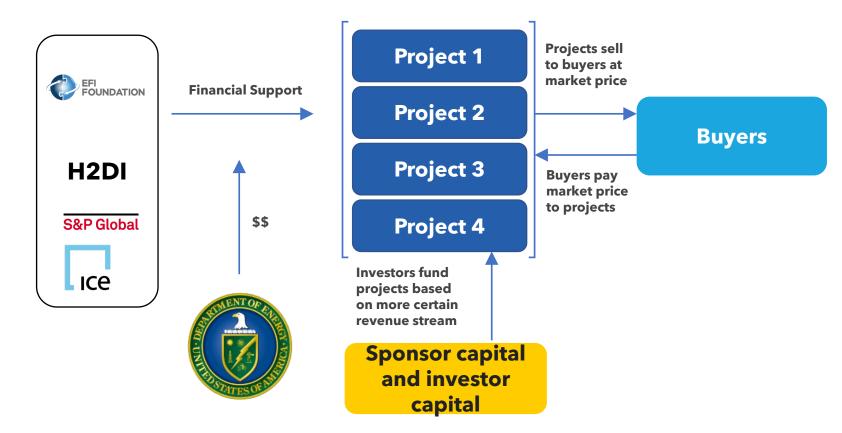
*Pending negotiations

Locations: Delaware, New Jersey, Pennsylvania

Federal Cost Share: **Up to \$750 Million***

Production

Connective Infrastructure


End Uses

- Electrolysis
- Biomass with carbon capture and storage
- Hydrogen pipeline infrastructure
- Hydrogen refueling stations
- Truck loading facility
- Heavy duty vehicles
- Material and cargo handling
- Power generation
- Combined heat and power

Demand Signal Needed for Market Certainty

January 2024, OCED announced the selection of the H2DI consortium, led by EFI Foundation, S&P, and ICE to support design of a demand-side program

Announcement kicks off a 6-9-month Design Phase to determine most catalytic demand-side mechanism

Group Discussion

Please discuss examples of collaborations, across DOE and with external stakeholders, that are accelerating progress toward goals of our National Clean Hydrogen strategy?

What are key elements for success?

What more can we be doing to bridge gaps?

Mahalo Nui Loa from Planet Earth...

Special thanks to all our Panelists, & to our Audience: *And Welcome to AMR!*

