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MOTIVATION: Green Hydrogen at scale — OER Anode studies

* Bringing green hydrogen to scale requires improvements in efficiency and long term performance

= A primary hurdle is the rate limiting step of oxygen evolution at the anode, which accounts for the
largest cost in the electrolyzer stack
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= How does the anode work? And what are the mechanisms that cause anode degradation?
— Turn to spectroscopy to understand the complex interface of membrane electrode assemblies

EXPERIMENTAL APPROACH — Operando Tender X-ray XPS

Ambient Pressure

X-ray Photoelectron Spectroscopy = Operando characterization with ambient pressure

X-ray Photoelectron Spectroscopy (AP-XPS) gives
catalyst and ionomer elemental and chemical state
iInformation at the surface.
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REASSESS EXPERIMENTAL APPROACH

Upqgraded Operando cell design New “snapshot” acquisition mode

Old open circle cell

Sub-second”scans” instead of allows for collecting
data from electrodes previously unobtainable due to
fast beam damage
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PRELIMINARY RESULTS: Snapshot data
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‘CONVENTIONAL’ RESULTS: The good & the bad
successes

o N
Full working system with catalyst oxidation and oxygen evolution Speciation: high oxidation state Ir>" during

OER and a low BE oxygen species, O*.
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Issues

Spatial variability on sample — data analysis & interpretation difficulties Beam damage with conventional scanning
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COLLABORATIONS

= Colleagues:
= Johannes Mabhl built coding infrastructure to view and process snapshot data.
= Ethan Crumlin helped to design the cell and guide experimental direction.

Dr. Crumlin

= Collaborators: Dr. Mahl
» Jason Keonhag Lee and Rangachary Mukundan provided the samples shown here.

= H2New Consortium provides fruitful network for assessment of data across spectroscopy and
microscopy types for a full view, multi-pronged approach to understanding how these devices work best.
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CONCLUSIONS & FUTURE WORK

= Accomplishments:

» Established an effective procedure for the collection of representative XPS data, avoiding most
effects of beam damage and sample spatial variability. e

= Higher oxidation state of Ir 5+ and O* moiety during OER, likely Ir-O

» Expands the data set to include samples previously inaccessible due
to excessive beam damage. (Alfa Aesar, Johnson Matthey, Hereaus)

= Key findings:

» Data is new and needs workup, but already have varying signatures in response to annealing
temperature, thickness and preparation.

= Can see the differences in catalyst state & response to potential between ink types & formulations.
= Future:

= Expand sample studies of various types. Increase resolution of current data sets (esp. sulfur).

» Use 3-electrode cell for better voltage reference

* Time-resolved studies. New detector/camera system at 9.3.1 beamline.
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