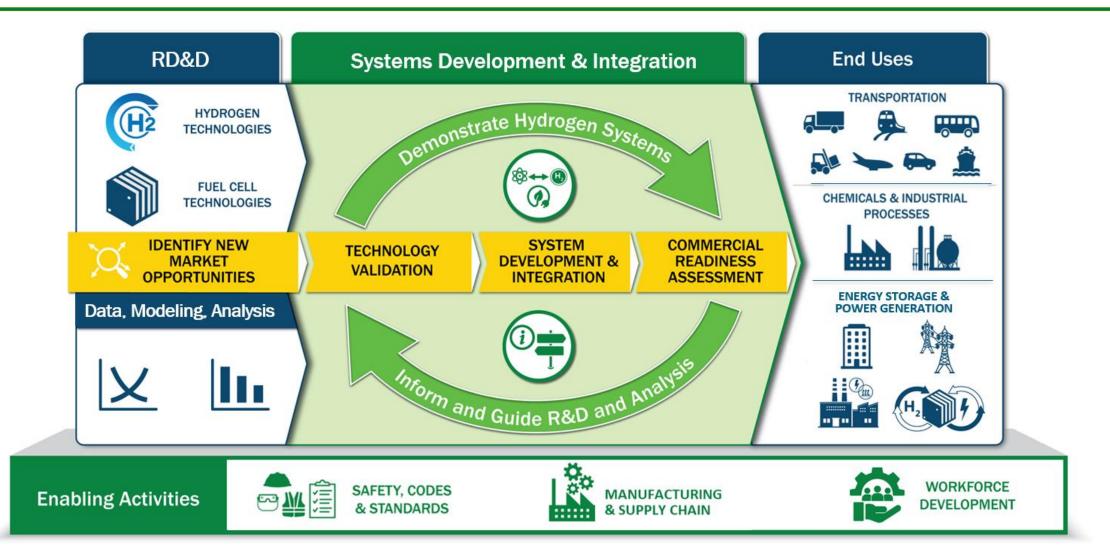


Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Systems Development & Integration Overview

Jesse Adams, HFTO – Systems Development & Integration Program Manager

2024 Annual Merit Review & Peer Evaluation Meeting


May 7, 2024 – Arlington, VA

The Hydrogen and Fuel Cell Technologies Office (HFTO)

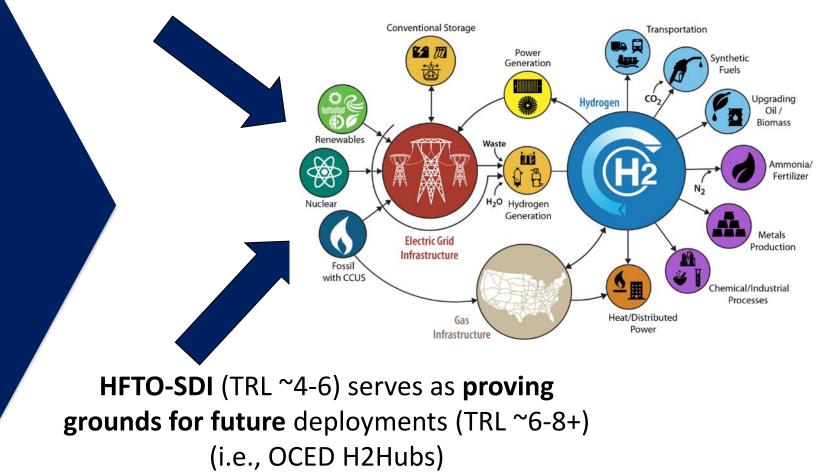
Mission	demonst hydrog	, development an stration (RD&D) o gen and fuel cell ogies to advance	of ·		Reduction Across Sectors le and Equitable Energy Future
		HFTO Sub	program	S	Searthshots Hydrogen
Hydrogen Te	chnologies	Fuel Cell Tech	hnologies	Systems Development & Integration	U.S. DEPARTMENT OF ENERGY
Hydrogen Production Hydrogen Infrastructur		Materials & Components Systems		Transportation Chemical & Industrial Processes Energy Storage & Power Generation	Enabling
Systems Analysis			Safe	ety, Codes & Standards	H2@Scale.
Cross-cutting	/ Enabling: ma	nufacturing, suppl	y chain, work	xforce, regional clean H ₂ networks	U.S. Department of Energy

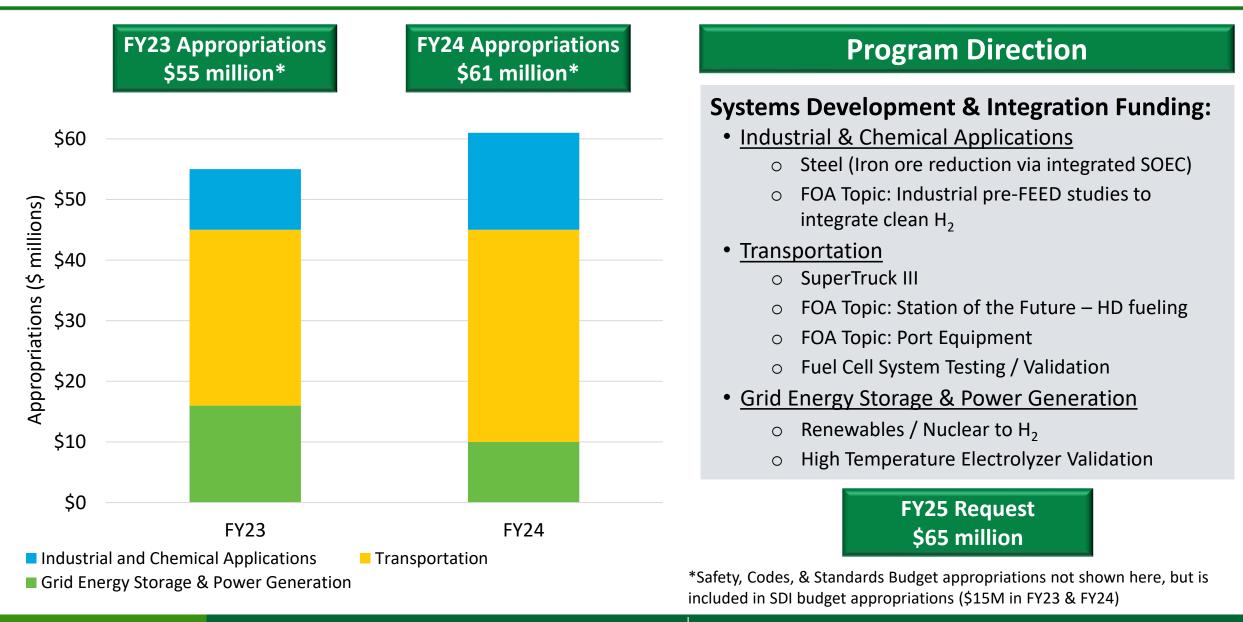
Systems Development & Integration Overview

Bridging the Gap Between R&D and Deployments with First-of-a-Kind Integrated H₂ Demonstrations

Systems Development & Integration (SDI): Priorities

Current Focus Areas


 Grid Energy Storage & Power Generation including hybrid approaches


 Chemical and Industrial Processes integrating H₂ technologies focusing on decarbonization

 Transportation & H₂ fueling demonstrations **Demonstrate** H₂ & fuel cell integration to accelerate market adoption & reduce GHG emissions **to enable H2@Scale vision**

Systems Development & Integration: Budget

Selected Regional Clean Hydrogen Hubs (H2Hubs)

H2Hubs: Summary

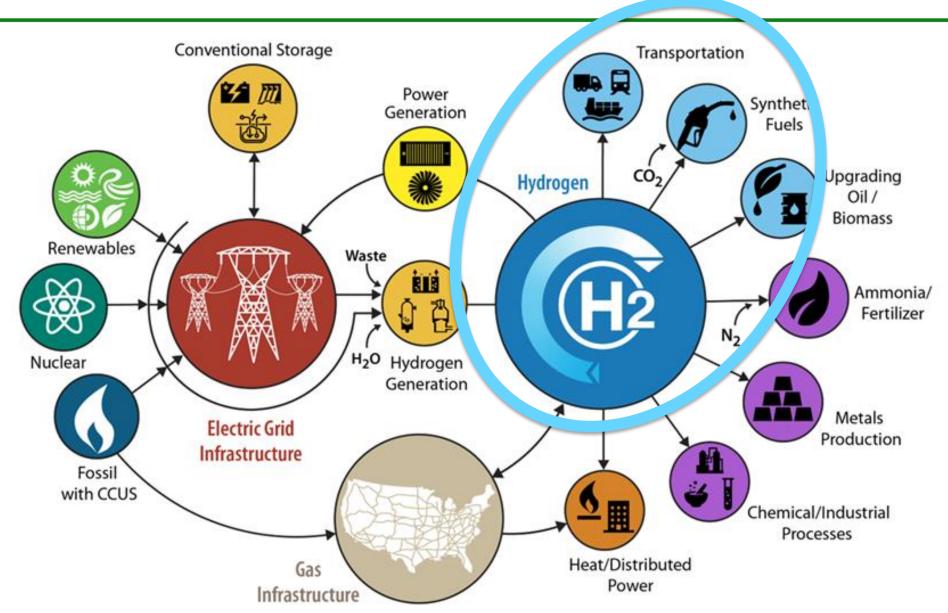
Phased Approach to Project Management

Led by DOE's Office of Clean Energy Demonstrations (OCED) in collaboration w/ HFTO & DOE H₂ Program

- Unprecedented Investment in America's H₂ Infrastructure
 - Federal investment of \$7 billion (Federal investment will be <u>matched by</u> recipients to leverage a total of <u>nearly</u> \$50 billion)
- Accelerating adoption of H₂ technologies:
 - <u>Approximately 3 Million Metric Tons of clean</u>
 <u>H₂ Production per Year</u>
- Providing tangible benefits for Americans:
 - Dedicated Dollars for Community Benefits
 - Tens of Thousands of Jobs
 - GHG Reduction of 25 million Metric Tons / Yr.
- Current Status

Go/No-Go Decisions

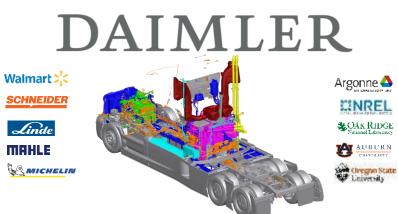
- H2Hub selections announced October 2023
- Awards under negotiation


SDI RD&D will Advance Proposed Technology needed for H2Hub Deployments

	Focus Areas	ARCH2	ARCHES	HyVelocity	Heartland	MACH2	MachH2	PNW H2
	Electrolysis (from Renewable and/or Nuclear Energy)	✓	\checkmark	\checkmark	\checkmark	\checkmark	✓	✓
Production	Thermal reforming with carbon capture and storage	\checkmark		✓	\checkmark		✓	
	Biomass gasification with carbon capture		~			~		
	Hydrogen pipelines		~	~	~	~	~	~
Connective Infrastructure	Hydrogen refueling stations	\checkmark	\checkmark	\checkmark		~	~	\checkmark
	Geologic Hydrogen Storage	\checkmark			~			
	Electric power generation	\checkmark	\checkmark		\checkmark	\checkmark	~	\checkmark
End Uses	Industrial (e.g., iron refining/steelmaking, ammonia production, synthetic fuel production, process heat)	✓		~	~	~	~	~
	Residential and commercial heating					~		
	Transportation (e.g., MD/HD vehicles, marine, cargo handling)	\checkmark	\checkmark	\checkmark		\checkmark	~	\checkmark

negotiations and during the detailed planning phases (Phases 1 & 2)

a-kind demonstration of technologies to be deployed in the H2Hubs


SDI: Transportation

Hydrogen Fuel Cell Heavy Duty Truck Projects – SuperTruck 3

Images below are not final product and are subject to change

TA056

Goals:

- Demonstrate 2 total (Class 8) HD longhaul fuel cell electric trucks (B-sample & final truck demo)
- 6.0 mi/kg H2 fuel economy
- 600-mile range (onboard LH₂ storage)
- 65,000 pounds GVW
- 25k hour lifetime

Key Accomplishments:

- Commissioned fuel cell system
- 1st complete B-sample prototype truck expected in 2024
- sLH2 fueling protocol developed

TA057

Ford Motor Company

Goals:

- Demonstrate 5 total (Class 4-6) MD vocational trucks
- 300+kW net vehicle power, H₂ PEM FC + Lilon battery
- 300-mile range (700 bar H₂ storage)
- 10K/20K pounds payload/tow capacity
- Meet or exceed 7.3L gas performance feel

Key Accomplishments:

- Commissioned fuel cell system
- 1st complete vehicle build expected in May 2024
- Over 20 patents filed

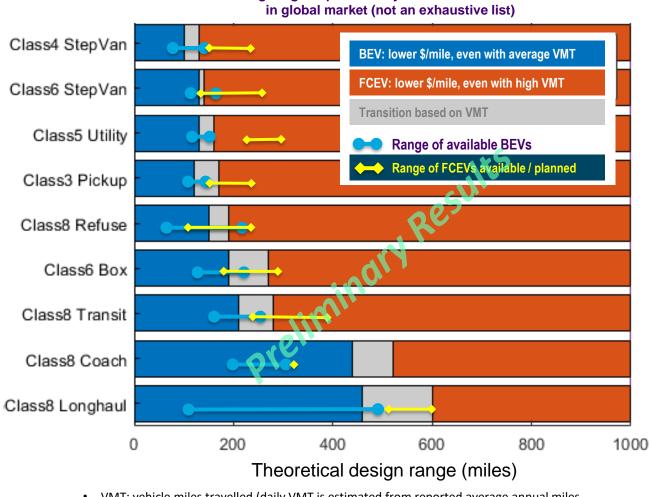
TA058

gm general motors

Southern Company

Goals:

- Demonstrate 8 total (Class 4-6) MD trucks
 0 4 fuel cell & 4 battery electric trucks
- Fuel Cell System Goals:
 - \circ 65% peak efficiency
 - o <\$80/kW system cost (100K units/yr)</p>o 20K-30K hour lifetime
- Demonstrate microgrid w/ electrolyzer & fuel cell (H₂ fueling & fast charging)


Key Accomplishments:

- Commissioned fuel cell system
- Early demo fleet build expected in 2024
- Path to >62% peak efficiency & >50% efficiency at full power

Multiple Solutions will be Required to Decarbonize Commercial Trucks

ANL – Medium-Duty TCO and Target Development (TA059)

Driving range of present day electric & fuel cell trucks

 VMT: vehicle miles travelled (daily VMT is estimated from reported average annual miles assuming 250 days of vehicle usage)
 Argonne

OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

VIUS: vehicle inventory and use survey

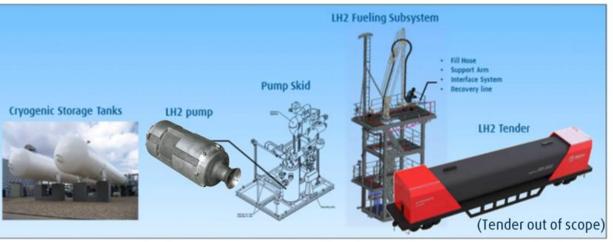
U.S. DEPARTMENT OF ENERGY

Scenario:

Cost of ownership estimated based on vehicle price, fuel/energy expenses for average & high levels of VMT

- Assumes all HFTO/VTO 2030 targets are met
- Fuel/Energy costs: \$4/kg H₂, \$0.15/kWh

Conclusions:


- BEVs are competitive for short range designs. Beyond a certain 'designed range' FCEVs become economically attractive.
- The 'breakeven' range depends on vehicle class, purpose, usage and energy costs
 - Incremental cost of adding a kWh of H₂ storage (\$9/kWh) is far lower than the cost of adding a kWh of usable battery energy (\$125/kWh)

Note: VIUS shows averaged daily driving. <u>Fleets must plan</u> for the variations in day-to-day operation & impact of <u>extreme real-world conditions as well.</u>

DOE is using TCO analysis & VIUS Data to Identify MD Vehicles / Vocations Best Suited for Fuel Cells

New Hydrogen Fuel Cell Rail Projects

Linde – HD Rail LH2 Fueling (SDI016)

Goals:

- Demonstrate feasibility of a high flow rate, cost effective and safe transfer of LH₂ into a rail tank car + strategy to mitigate the resulting losses
- Design, construct & test in a high fill-rate prototype at industrial scale

Technical Targets:

- Minimum 1200 kg LH₂ at 100 kg/min flow rate
- Less than 4% H₂ vapor losses in transfer

Potential Impact: Project will demonstrate high flow LH2 fueling rates for LH2 tenders for rail applications

South Coast Air Quality Management District – Rail Freight System* (SDI011)

Goals:

- Demonstrate zero emissions LH₂ fuel cell rail technology
 - Design and develop LH₂ and fuel cell locomotive system (Wabtec)
- Develop power and drivetrain
 - Increase power throughput
 - Increase tractive effort
- Demonstrate fast refueling, safely handling and use LH₂
- Remote monitoring for continuous data analysis
- Start 12-month demonstration in 2027

Potential Impact: Initial design of a H2 short haul freight locomotive for demonstration that will be funded by SCAQMD *Congressionally Directed

New Heavy-Duty Fuel Cell Test Facility – Argonne National Lab

National Resource for Independent Analysis, Testing & Validation of HD Fuel Cell Systems

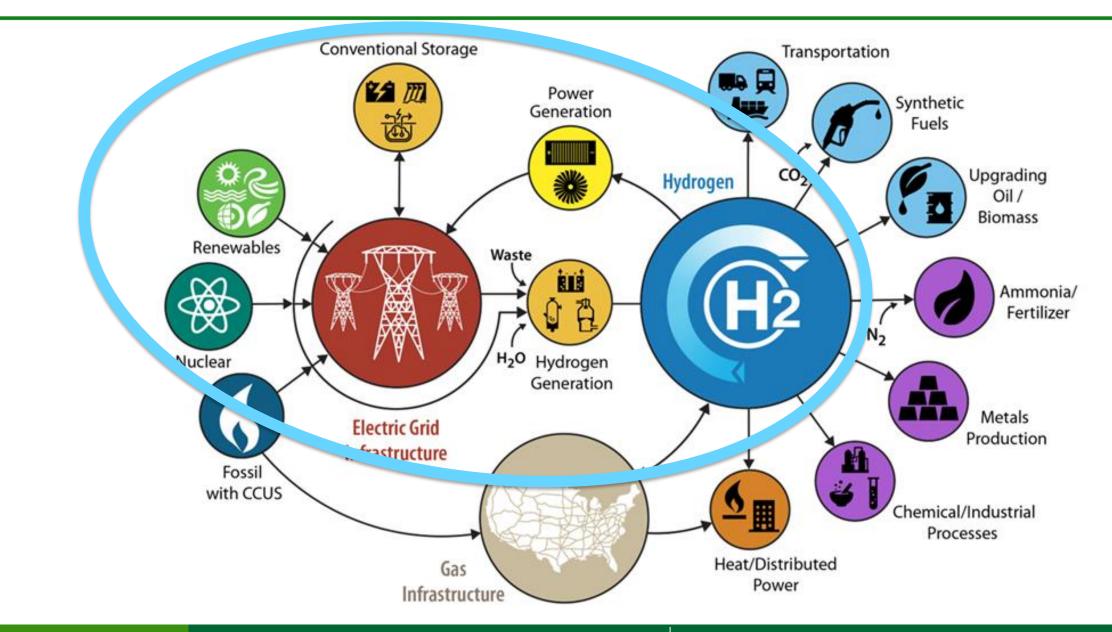
TEST PEM and high temperature PEM fuel cell systems ranging from 150–600 kW

EVALUATE fuel cell/battery hybrid systems up to 1.2 MWh with 600 MWh of battery emulation

OPERATE in a hardware-in-the-loop (HIL) powertrain environment

MAKE application duty cycle commands through Argonne's Autonomie software

EMULATE powertrain for heavy duty off-road, rail, marine and on-road applications


Operational Fall 2025

IMPROVE Performance Durability Reliability Efficiency Cost

Contact: Ted Krause (krauset@anl.gov)

CENERGY

SDI: Grid Energy Storage & Power Generation

H2@Scale Demonstrations – Proto-Hub (TA037)

GTI ENERGY

H2@Scale in Texas and Beyond Project Hydrogen Research and Demonstration Facility Ribbon Cutting Ceremony

> Hosted By: The University of Texas at Austin

Cockrell School of Engineering

April 23, 2024

Center for Electromechanics

Frontier Energy – Demonstration and Framework for H2@Scale in Texas and Beyond

Goals:

- Minimize H₂ cost through multiple generation sources
- Co-locate H₂ end uses (stationary power & vehicle fueling)
- Develop 5-year H₂ Plan (framework study) for Port of Houston and Gulf Coast region

Key Accomplishments:

- Ribbon Cutting Event held on April 23rd!
- All components installed with commissioning underway and first H₂ fueling completed
- "A Framework for Hydrogen in Texas" study published

FRINTIER

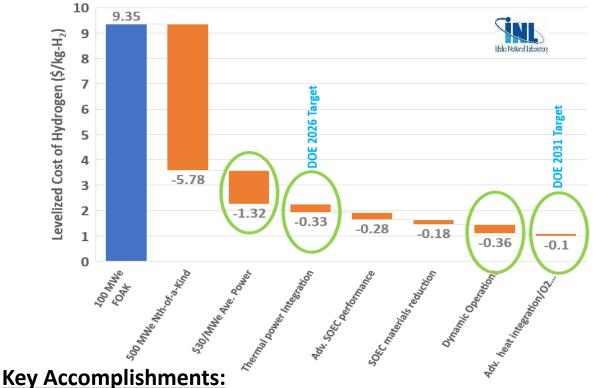
energy

High Temperature kW Scale Electrolysis Integrated Energy Systems (TA018)

INL – HTE Stack and System Testing

Status:

- 100kW Bloom SOEC System: Completed >6500 hours, stable efficiency: 37.7 kWh/kg DC, minimal degradation
- 250kW FCE SOEC System: testing to start this summer
- Also testing Nexceris, OxEon, Denso, and Topsoe stacks
- Plan to use H₂ produced for bus fueling / methanol production



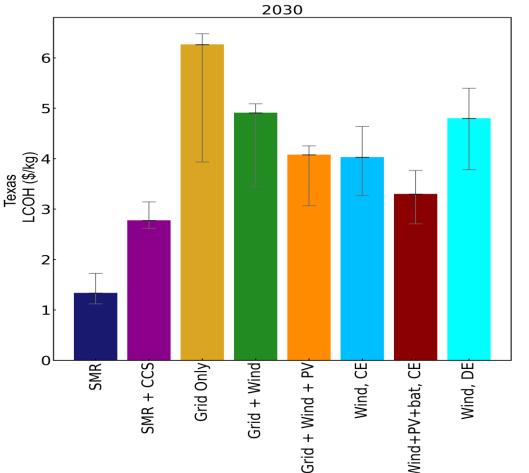
Key Accomplishments:

- >20,000 hrs cumulative stack / system testing
- Minimal degradation (typically <0.05% / 1000 hrs)

LCOH for HTE System

Need system / thermal integration development & SOEC material advancement to hit \$1/kg

- Pathway to hit \$1/kg identified
- Behind the meter NE to H₂ design completed (Vistra, Xcel)
- Thermally integrated HTE designs (Westinghouse) & validations (INL / FCE / Bloom) in process


Expansion to Multi-MW Electrolyzer Stack and System Test Capabilities

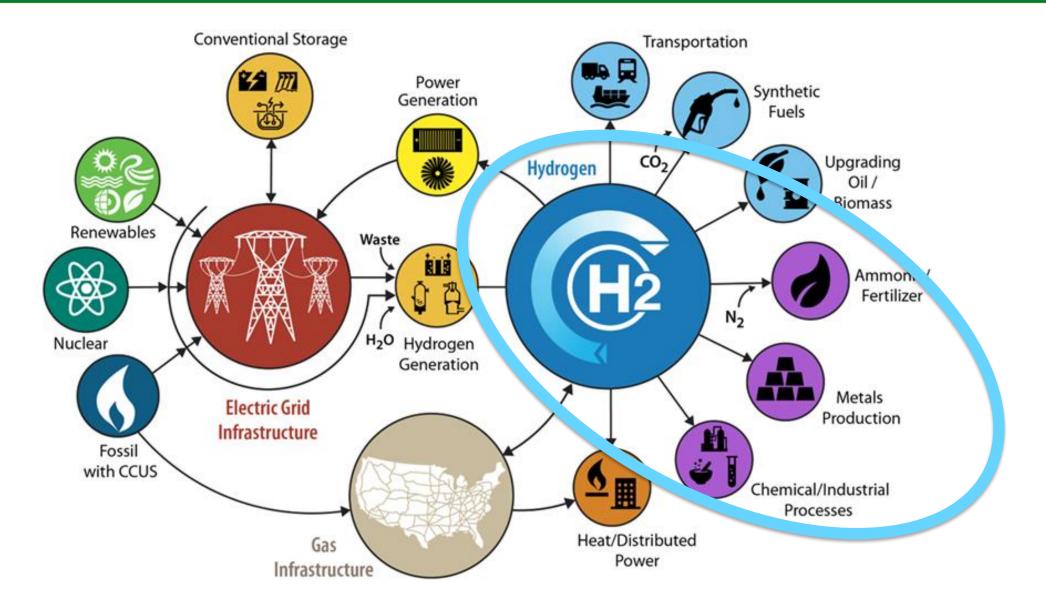
Low-Temperature Electrolyzers – NREL (ELY-BIL001)	High-Temperature Electrolyzers – INL (SDI006)
 Expansion of NREL's Flatirons Campus ARIES capability to support industry 	 High Temp Test Facility (HTTF) is cornerstone of INL's Energy Technology Proving Ground
 Full system testing up to 10 MW_{AC} Parallel stack testing up to 6 MW_{DC} in aggregate for 	 Full, simultaneous HTE systems testing up to 10 MW_{AC} in aggregate
PEM and/or alkaline stacksGrid integration with renewable energy production	 Simulated nuclear integration and future physical integration with microreactors
and other ARIES assets Coming online	 Multiple H₂ end use test possibilities including fueling for INL coach fleet and bio-CO₂ capture
in 2026!	Coming online in 2025!
OZ/H20 Heat Exchanger Resin Beds Pump H2/H20 Separator Pipe Pipe	

Fully Integrated Renewables to H₂ to Industrial End-Use Analysis

NREL* - GreenHEART Modeling & Analysis (SDI001)

*NREL led with support from ANL, LBNL, ORNL, and SNL Project Jointly Funded with DOE Wind Energy Technology Office

"Source: Reznicek, E. et al., 2024, *Techno-economic analysis of low-carbon hydrogen production pathways for decarbonizing steel and ammonia production*. Manuscript submitted for publication."

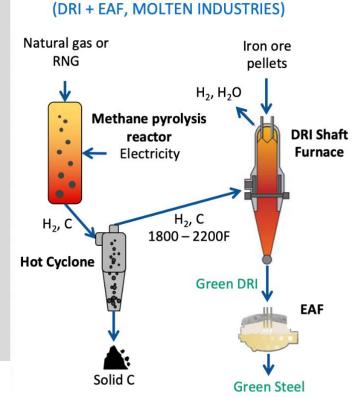

<u>Goals:</u>

- Develop reference designs for GW-scale off-grid, behind the meter, hybrid energy systems for co-located renewables to H₂ to Industrial processes
- Provide alternative path to decarbonization for hard-to-abate industries
- Identify best location when considering wind, solar, H₂ storage, water, etc.

Key Accomplishments:

- Reference Design Use Cases Complete for MN, TX, Gulf of Mexico and Pacific (CA)
- Multiple renewable sources + batteries (i.e., wind, solar, battery) provide lowest cost for many locations (higher compacity factor / less H2 storage requirements)
- H₂ storage cost can be significant if no geologic storage
- Provides opportunity to build out renewables without having to wait for grid permitting
- Policy may bridge the gap between SMR and clean H₂

SDI: Industrial & Chemical Processes


New Industrial Process Projects

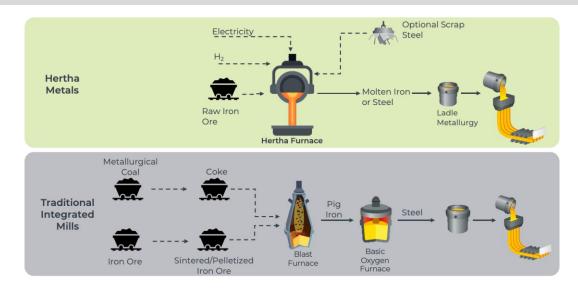
Molten – Carbon-Neutral Steel Production with Methane Pyrolysis Driven Direct Reduced Iron

Goals:

Design, build, & test first thermally integrated <u>methane pyrolysis</u> / Direct Reduction of Iron (DRI) pilot scale system

- Demonstrate use of solid carbon produced by pyrolysis for carburization
- 400 kg/day DRI production demonstration
- >85% reduction in carbon intensity

PROPOSED PROCESS


Potential Impact: Demonstrate low-carbon steel production with methane pyrolysis

Hertha Metals, Inc. – Hydrogen-Electric Smelting Reduction for Green Iron & Steel Production (SDI008)

Goals:

Develop a pilot-scale technology that converts <u>any grade of direct</u> <u>shipping iron ore (as opposed to only DRI-grade ore)</u>

- 300 kg/day scale with a carbon intensity demonstration
- >90% reduction in carbon intensity (0.1 tons of CO₂e/ton of crude steel)

Potential impact: Demonstrate low-carbon steel production with novel reactor and lower-grade ore

New Industrial Process Projects

U. of Wisconsin – Demonstration of a SOEC Hydrogen Direct Reduction at Toledo, OH steel plant (SDI009)

Goals:

- Thermally & chemically integrate a HT electrolyzer (250 kW SOEC) able to operate in steam and co-electrolysis to demonstrate potential to reduce CO_2 from existing commercial DRI furnace
- DRI production capacity of 1.6 MT/year
- 90% reduction in CO2 emissions
- TRL 4 to TRL 6
- Demonstrate operation for 3600 hr at 250 kW
- Demonstrate LCA and TEA in comparison to incumbent NG DRI

<u>Potential Impact</u>: Demonstrate potential (at scale) to integrate SOEC and reduce CO₂ emissions of commercial DRI furnace >90%

OCED Industrial Demos Program -- \$1.7+ Billion for Clean H₂ End-Uses (examples)

Hydrogen-Ready Electric Melting Furnace Iron & Steel Retrofit

- Install a hydrogen-ready, flex-fuel DRI and 2 electric melting furnaces
- \$500 million federal cost share
- Cleveland-Cliffs, Middletown, OH
- 1 million metric ton GHG emission reduction

Hydrogen-Fueled Zero Emissions Steel Making

- Build world-first commercial-scale facility using the HYBRIT[®] DRI technology with 100% hydrogen
 - \$500 million federal cost share
 - SSAB, Perry County, MS and Montpelier, IA
 - 81% GHG emissions reductions

Baytown Olefins Plant Carbon Reduction Project

Use new burner technologies for ethylene production to enable the use of H₂ in place of natural gas across high heat-fired equipment
\$332 million federal cost share
Exxon Mobil Corp., Baytown, TX

Project descriptions and details available here: https://www.energy.gov/sites/default/files/2024-03/FINAL%20IDP%20Selection%20National%20Briefing_0.pdf

FOA Topics Relevant to SDI

Office	Funding Opportunity	Торіс	Total Funding Level	Funding Per Award	Full App Due
	FY24 HFTO FOA to	Topic 2 : Standardized Hydrogen Refueling Station of the Future	\$30M	\$10M	March
HFTO	Advance the National Clean Hydrogen Strategy	Topic 3 : Hydrogen Fuel Cell Powered Port Equipment	\$10M	\$4M	
IEDO (in collaboration w/ HFTO)	FY24 Energy and Emissions Intensive Industries FOA	 Topic 6: Innovative Industrial Pre-FEED Studies AOI 1: Integration of Clean Hydrogen in the Industrial Sector AOI 3: Integrated Process Pre-FEED 	\$5M	\$0.5 – \$1.5M	June

Others Related Solicitations:

- \$3B EPA's Clean Ports Program open through May 28
 - Zero-emission technology (Equipment and Infrastructure) at the port which includes H2 and fuel cell technology
 - Requires previous deployment experience; no R&D (<u>https://www.epa.gov/ports-initiative/cleanports</u>)

SDI: Collaboration Network

Fostering technical excellence, economic growth and environmental justice

	Industry	_		DOE H	Program Colla	borations			Cross-Agen		
Engagement			Collaboration across H ₂ through Joint Strategy Team (JST)					Collaborations			
	^t Century Truck ership / U.S. DRIVE		DC	DE OCED	DOE VTO	DOE WET	C	Hydr	ogen Interagency	Task Force	
	ad Working Group	- L	D	OE IEDO	DOE NE	DOE FECN	1	• •	 i) 14 government departments agencies, 280+ participants 		
	.		DOE	Joint Office	DOE MESC	DOE BETC		Modal Action Plan		•	
	FCHEA								bad, M/HD Trucks		
Participated in Numerous Conferences, Workshops & Working Groups			DOE Cross-Cutting Initiatives						EPA, HUD)		
			Industrial Decarbonization, Long Duration Storage, Floating Offshore Wind, Clean Fuels & Products,					IAA Fuel Cells for Fast Charging (Army-GVSC, Navy-NRL)			
			Industrial Heat, Grid Modernization								
U.S. Regional and International Collaborations											
	Project Coordination across ~20 U.S. States	Innov – Ze Emis	sion vation ero ssion ping	Mission Innovation – Clean H2	International Offshore Wind to H2 Working Group	IEA Wind and H2 Tasks: Renewable Hybrid System Collaboration	Japa Minis Econ Trade Indu	try of omy, , and	National Research Council- Canada		

SDI: Highlights and Milestones

FY2023	FY2024	FY2025
Regional Clean H2Hubs: Concept Paper reviews complete; Full Applications received 4/7/23 & reviews in process (in collaboration w/ OCED)	Regional Clean H2Hubs: Select & Help Negotiate 7 H2Hubs (in collaboration w/ OCED)	Regional Clean H2Hubs: HFTO will support Phase 1 detailed Project Planning as Technical Advisor on OCED Integrated Project Teams
Demonstrated Integrated (behind-the-meter) 1.25 MW Electrolyzer Installation at Nuclear Plant (Constellation)	Design 10MW Low & High Temperature Electrolysis Validation Facilities (NREL & INL) Test 250kW HT Electrolysis System using Fully	Complete procurement and construction for 10 MW HT Electrolyzer test facility at INL
Completed Integration & Commissioning of 1.25MW Electrolyzer and 1MW Fuel Cell Systems (NREL – ARIES)	Emulated Nuclear Integrated Test Stand (INL/FCE) Demonstrate Directed Connected Wind Turbine to LT	Commissioning of Heavy-Duty Fuel Cell Validation Facility (ANL)
Initiated Design of Full Thermal Integration at a Nuclear Plant with HT Electrolyzer in Collaboration with NE (Westinghouse)	Electrolyzer H ₂ Production (NREL – ARIES) Completed >20,000 cumulative hours of HT	Operation of ~10 Fuel Cell SuperTruck 3 Prototypes in Final Configuration with Fleet Partners
Demonstrated 15 Fuel Cell Electric MD Delivery Trucks Operating in Disadvantaged Community (CTE)	electrolysis stack / system testing with minimal degradation observed (INL)	Rail: Develop High-Rate Liquid Hydrogen Fueling for HD Rail (Linde) & Design H2 Fuel Cell Power
Completed design, fabrication & testing of Class 7 H2Rescue Disaster Relief Truck (DOD, DHS, Cummins)	Demonstrated 1.5 MW H ₂ Fuel Cell for Data Center Resiliency (Caterpillar, Microsoft)	Short Haul Rail Locomotive (SCAQMD, Wabtec) Initiate Retrofit a Komatsu Mine Haul Truck with a Prototype LH2 Storage System
Kicked-off of I-10 H ₂ Fueling Corridor Study in Collaboration with EERE-VTO (GTI)	Prototype Commissioning of multiple Class 4-8 Fuel Cell Electric Trucks through SuperTruck 3 (Daimler, GM, Ford)	Start New Integrated DRI/HBI Mill with 250kW SOEC (U. of Wisconsin, Cleveland Cliffs)
Developed Reference Design & TEA for Direct Coupled Wind to H2 to Industrial End-Use (NREL)	Began design of Heavy-Duty 600kW Fuel Cell Validation Facility (ANL)	Host H ₂ Clean Steel Workshop with Association for
Demonstrated 1 tonne/wk Reduction of Iron with H ₂ , enabling 90%+ emissions reduction (MS&T)	Launched Hydrogen Interagency Taskforce (HIT)	Iron & Steel Technologies (AIST) in Germany
Selected New H ₂ Related Industrial Decarb Projects in Collaboration with EERE-IEDO (Molten & Hertha)	Initiated Interagency Project Demonstrating Fuel Cells for BEV Fast Charging (DOD, DHS, GN)	Award projects for 3 FOA topics: Station of the Future, Port Equipment, and IEDO Industrial Pre- FEED Studies

Systems Development & Integration Team

Jesse Adams Systems Development & Integration Program Manager Jesse.Adams@ee.doe.gov

Brian Hunter Michael Hahn Brian.Hunter@ee.doe.gov **Technology Manager Technology Manager**

Michael.Hahn@ee.doe.gov H2Hubs, Grid Integration & Power Gen Grid Integration & Power Gen

Pete Devlin Peter.Devlin@ee.doe.gov **Technology Manager** Transportation

Benjamin Gould Benjamin.Gould@ee.doe.gov **Technology Manager** H2Hubs & Transportation

Tomas Green Tomas.Green@ee.doe.gov **Technology Manager Chemical & Industrial**

Rebecca Erwin Rebecca.Erwin@ee.doe.gov **Technology Manager Chemical & Industrial**

Zeric Hulvey Zeric.Hulvey@ee.doe.gov **Technology Manager**

Kevin Carey Kevin.Carey@ee.doe.gov **Technical Project Officer**

Elizabeth Brennan **ORISE Fellow**

Ashley Bird Ashley.Bird@ee.doe.gov **ORISE Fellow**

Will Luppino Will.Luppino@ee.doe.gov **Contractor Team Lead - Contractor**

Tom Jacbos Tom.Jacobs@ee.doe.gov **Program Analyst - Contractor**

U.S. DEPARTMENT OF ENERGY

OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

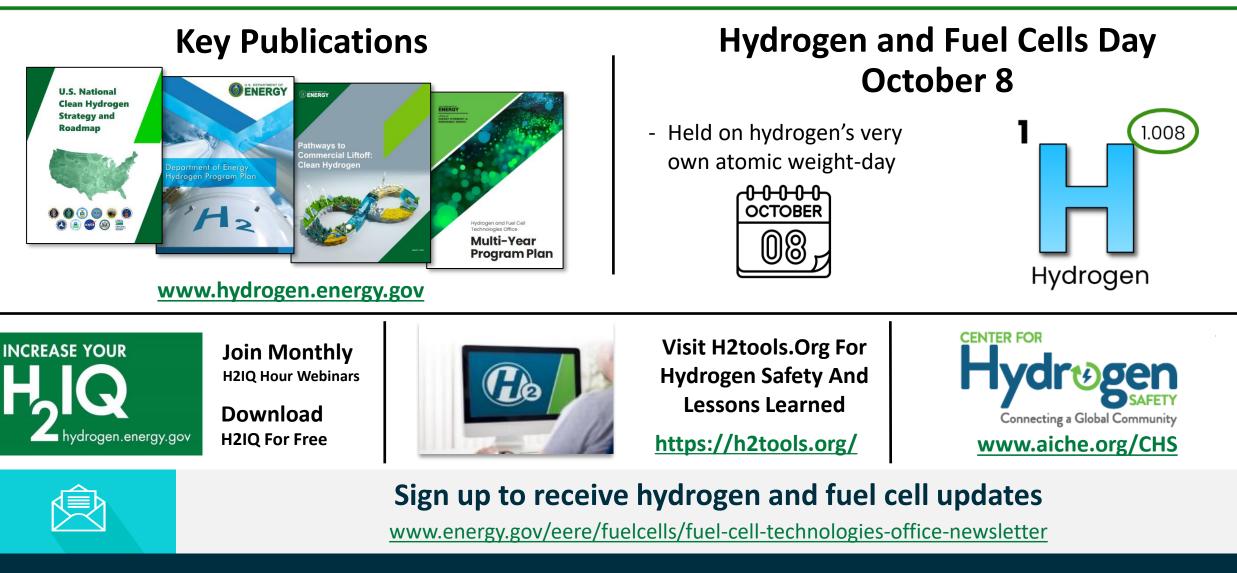
Join Our Clean Energy Workforce Today

Stop by the table outside Independence Ballroom at lunch to learn more!

EERE is driving the clean energy revolution by funding the innovation that's building the technologies that will forever change the way energy is generated and consumed. So now is a great time to become a **Clean Energy Champion** by joining EERE today!

Together we strive to:

- > Build the clean energy economy in a way that benefits all Americans.
- Create good paying jobs for the American people.
- Overcome the technological, economic, and institutional barriers to the development of hydrogen and fuel cells.
- > Make renewable energy cost-competitive with traditional sources of energy.
- Increase access to domestic, clean transportation fuels.
- Reduce the carbon footprint of buildings.
- > And so much more.


EERE is committed to building a clean energy workforce with skilled professionals from diverse backgrounds. If interested in learning more about **becoming a Clean Energy Champion & joining the Clean Energy Revolution, stop by our booth to speak with our EERE Talent Acquisition representatives today!** EERE CAREER HOME PAGE EERE Career News Letter

Resources and Opportunities for Engagement

Learn more at: energy.gov/eere/fuelcells AND www.hydrogen.energy.gov

HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE

Session Preview

Tuesday Session: SDI

	Tuesday, May 7th					
SDI000	Systems Development & Integration: Subprogram Overview	HFTO	Jesse Adams			
TA056	Ultra-Efficient Long-Haul Hydrogen Fuel Cell Tractor	Daimler	Darek Villeneuve			
TA057	High Efficiency Fuel Cell Application for Medium Duty Truck Vocations	Ford	Stan Bower			
	Break (10:30 AM - 11:00 AM)					
TA058	Freight Emissions Reduction via Medium Duty Battery Electric and Hydrogen Fuel Cell Trucks with Green Hydrogen Production via a New Electrolyzer Design and Electrical utility Grid Coupling	GM	Jacob Lozier			
SCS031	Heavy Duty Fueling Methods and Components	NREL	Shaun Onorato			
	Lunch (12:30 PM - 1:45 PM)					
TA016	Fuel Cell Hybrid Electric Delivery Van	CTE	Steve Clermont			
TA059	MDV TCO and Target Development	ANL	Ram Vijayagopal			
TA065	Total Cost of Ownership (TCO) Analysis of Hydrogen Fuel Cell in Off Road Heavy-Duty Applications - Preliminary Results	ANL	Rajesh Ahluwalia			
Break (3:15 PM - 3:45 PM)						
TA001	MEA Manufacturing R&D	NREL	Peter Rupnowski			
TA029	Autonomous Hydrogen Fueling	Plug Power	Karen Swider Lyons			
TA063	High Efficacy Validation of Hydride Mega Tanks at the ARIES LAB (HEVHY METAL)	NREL	Katherine Hurst			

- 6 parallel sessions
- SDI session runs all 3 days
- <u>Tuesday: Transportation Focused</u>
 - SuperTruck 3
 - HD Fueling
 - MD demos & analysis
 - Misc projects related to MEA manufacturing & bulk H2 storage

Wednesday Session: SDI, Interagency Session, SDI-Posters

	Wednesday, May 8th						
TA048	ARIES / Flatiron Facility - Hydrogen System Capability Buildout	NREL	Daniel Leighton				
TA037	Demonstration and Framework for H2@Scale in Texas and Beyond	Frontier	Rich Myhre				
TA030	Demonstration of Integrated Hydrogen Production and Consumption for Improved Utility Operations	Orlando	Paul Brooker				
Break (10:30 AM - 11:00 AM)							
TA062	Validation of Interconnection and Interoperability of Grid- Forming Inverters Sourced by Hydrogen Technologies in View of 100% Renewable Microgrids	NREL	Kumaraguru Prabakar				
SDI002	Hybrid Energy Systems, Microgrid in Underserved Communities (Borrego Springs)	NREL	Kumaraguru Prabakar				
SDI001	Integrated Modeling, TEA, and Reference Design for Renewable Hydrogen to Green Steel and Ammonia	NREL	Steve Hammond				
	Lunch (12:30 PM - 1:45 PM)						
TA018 SDI004	High Temperature Electrolysis, Stack, and Systems Testing/Hydrogen Coach Bus Fueling Demonstration	INL	Micah Casteel				
TA028	Demonstration of Electrolyzer Operation at a Nuclear Plant to Allow for Dynamic Participation in an Organized Electricity Market and In-House Hydrogen Supply	Constellation	Uugi Otgonbaatar				
TA039	Solid Oxide Electrolysis System Demonstration	FCE	Hossein Ghezel- Ayagh				
	Break (3:15 PM - 3:45 PM)						
NE001	LWR Integrated Energy Systems Interface Technology Development & Demonstration	Vistra Corp.	Greg Michael				
TA044	System Demonstration for Supplying Clean, Reliable and Affordable Electric Power to Data Centers using Hydrogen Fuel	Caterpillar	Paul Wang				
TA051 TA060	Offshore Wind to Hydrogen - Modeling, Analysis, Testing, and International Collaboration Work	NREL	Genevieve Saur				
TA064	Hydrogen Production, Grid Integration, and Scaling for the Future	NREL	Sam Sprik				

	Wednesday, May 8th Poster Session 5:30 PM - 7:00 PM						
TA043	SOEC Stack Development and Manufacturing	PNNL	Olga Marina				
TA061	Optimal Wind Turbine Design for H2 Production	NREL	Chris Bay				
SDI008	Hydrogen-Electric Smelting Reduction for Green Iron & Steel	Hertha Metals	Daniel Bullard				
301008	Production	Inc	Daniel Buildru				
	Demonstration of a SOEC Hydrogen Direct Reduction (HDR) at	University of					
SDI009	the Toledo, Ohio Steel Plant	Wisconsin-	Luca Mastropasqua				
		Madison					
SDI010	Scaled Solid Oxide Co-Electrolysis for Low Cost Syngas	GE Research	Paul Glaser				
301010	Synthesis from Nuclear Energy	GE Research					
SDI013	Port Demand Assessment - MARAD Co-Fund / Hydrogen for	SNL	Leonard Klebanof				
501015	Maritime and Rail Fuel Cell Technologies	SINE					
SDI015	LTE Electrolyzer Data Collection	NREL	Sam Sprik				
		Linde					
SDI016	High Rate Liquid Hydrogen Fueling for HD Rail	Engineering	Sean Kelly				
55,010		North America	Seath Kelly				
		America					
SDI017	HTE Electrolyzer Data Collection	INL	Michah Casteel				

• Wednesday: Non-

Transportation Focused

- Systems Integration w/
 Nuclear & Renewables
- Microgrids / Power
 Electronics
- Fuel Cells Powering Data
 Centers
- Data Collection & Analysis

- <u>Wednesday Evening: SDI</u>
 <u>Posters</u>
- <u>Wednesday: Interagency</u> <u>Session</u>
- DOT Panel
- Liftoff Report
- Joint projects with DOD

Thursday Session: Systems Development & Integration

Thursday, May 9th							
TA053	Grid-Interactive Steelmaking with Hydrogen (GISH)	Missouri S&T	Ronald Omalley				
TA052	Solid Oxide electrolysis Cells (SOEC) Integrated with Direct Reduced Iron (DRI) Plants for Producing Green Steel	UCI	Jack Brouwer				
Break (10:30 AM - 11:00 AM)							
OCED001	California Hydrogen Hub - Alliance for Renewable Clean Hydrogen Energy Systems	ARCHES	Angelina Galiteva Scott Brandt Adam Weber				
OCED002	Pacific Northwest Hydrogen Hub	PNW H2	Chris Green				
OCED003	Midwest Hydrogen Hub - Midwest Alliance for Clean Hydrogen	MachH2	Neil Banwart				
	Lunch (12:30 PM - 1:45 PM)						
OCED004	Heartland Hydrogen Hub	HH2H	Chad Wocken				
OCED005	Appalachian Regional Clean Hydrogen Hub	ARCH2	Shawn Bennett				
OCED006	Mid-Atlantic Clean Hydrogen Hub	MACH2	Joe Colella Manny Citron				
OCED007	Gulf Coast Hydrogen Hub - HyVelocity H2Hub	HyVelocity	Ted Barnes				

- <u>Thursday:</u>
 - Industrial Iron / Steel Production
 - All 7 H2Hubs!

Session Logistics

General Information

- This meeting is a review, not a conference
 - Questions will be taken first from reviewers, and then from other audience members as time allows
- The schedule will be strictly followed so that reviewers can move between sessions
- Presentations are 20 minutes followed by 10 minutes Q&A

Your input on our Program and subprograms helps guide our decisions.

Thank you for your thoughtful, objective, and timely feedback!

Thank You

Jesse Adams

Systems Development and Integration Program Manager Hydrogen and Fuel Cell Technologies Office jesse.adams@ee.doe.gov

U.S. Department of Energy

www.energy.gov/fuelcells www.hydrogen.energy.gov

HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE