

MINES

# Honeywell



FueL Additives for Solid Hydrogen (FLASH) Carriers for Electric Aviation

Noemi Leick (P.I.) National Renewable Energy Laboratory

DOE Hydrogen Program, Award # TCF-21-24761 2024 Annual Merit Review and Peer Evaluation Meeting – May 8<sup>th</sup>, 2024

#### AMR Project ID# ST243

This presentation does not contain any proprietary, confidential, or otherwise restricted information

## **Project Goal**

### **Motivation:**

- Most UAV technologies currently rely on (non-renewable) electric power.
- Fuel cells with material-based H<sub>2</sub> storage addresses this limitation and can be cost effective.
   Optimization of fuel

### **Project goals and outcomes:**

- Develop FLASH formulation that can deliver  $6g H_2/100g$  fuel
- Design, build and test fuel cell cartridge compatible with FLASH
- Test FLASH with 600 W fuel cell system and quantify cartridge and system specific energy

Optimization of fuel formulation for H<sub>2</sub>powered unmanned aerial vehicles (UAVs).



www.aerospace.honeywell.com

 Technology Commercialization Fund

 U.S. DEFARTMENT OF
 OFFICE OF

 ENERGY
 OFFICE OF

 Technology Transitions

# Overview

# Technology Commercialization Fund US DEPARTMENT OF OFFICE OF Technology Transitions

### Timeline

Project Start Date:

> NREL: 11/01/2022

- > Honeywell: 03/15/2023
- Project End Date: 06/14/2024

### Budget

- Total DOE Share: \$250k
- Total Cost Share: \$250k
- Total DOE Funds Spent\*: \$210k
- Total Cost Share Funds Spent\*: \$150k
   \* As of 03/15/2024

### **Barriers and Targets**

| Technical barriers addressed by the project                                          | Project's key technical<br>targets |
|--------------------------------------------------------------------------------------|------------------------------------|
| Cost of borohydride fuel too high.                                                   | Max. \$150/kg of fuel              |
| Lacking assessment matrix for fuels is preventing efficient material screening.      | Min. 6 wt% $H_2$ from total fuel   |
| Impurities in $H_2$ stream: detrimental to fuel cells and toxic to living organisms. | Power a 600 W fuel cell system     |

### **Partners**

- N. Leick (PI, NREL)
- F. Harrington, R. Moen (Honeywell)
- N. Strange (consultant, SLAC)
- T. Gennett (advisor, NREL & Colorado School of Mines)



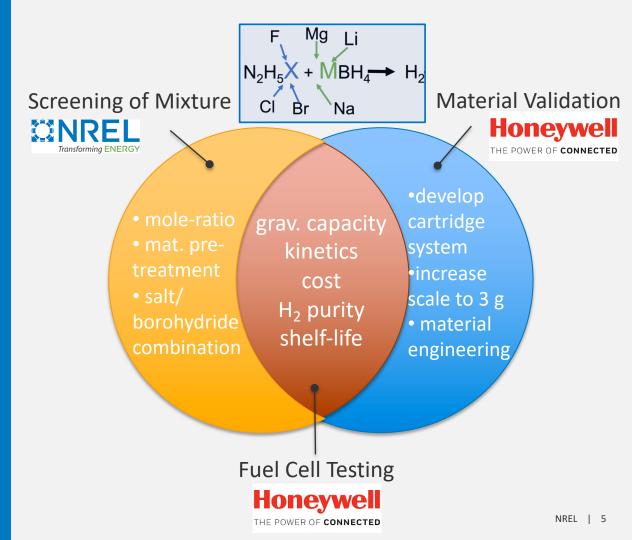
Honeywell

THE POWER OF CONNECTED

MINES

# **Potential Impact**

 Technology Commercialization Fund


 Unit of ENERGY
 OFFICE OF Technology Transitions

| Project activity                                                                                           | Potential Impact                                                                                                                                                                 | Relevance to DOE goals                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Establish mixtures of borohydride<br>and salts able to overcome current<br>borohydride-related challenges. | NaBH₄-based fuels have the<br>potential to meet the target of<br>\$150/kg, threshold to marketability.<br>(Honeywell's current material costs<br>\$600/kg).                      | The project's materials were<br>identified by DOE's HyMARC EMN.<br>Rⅅ efforts are necessary to<br>reduced costs, at the material-<br>based, component, and system-<br>level, which will provide pathways to<br>private sector uptake. |
| Develop assessment matrix for fuels used in green UAV technologies.                                        | The assessment matrix developed will enable a more efficient selection of fuels for $H_2$ -fuels for drones.                                                                     | This can in turn lower greenhouse<br>gas emissions and criteria<br>pollutants.                                                                                                                                                        |
| Quantification of impurities in H <sub>2</sub> stream for down selected fuels.                             | Understanding their impact in<br>different environments (fuel cells,<br>atmosphere, biosphere) is crucial for<br>the advancement of green<br>technologies in the drone industry. | This can support (and improve)<br>energy, environmental, or social<br>justice.                                                                                                                                                        |

### Approach

- 1. Screening of Mixture (small scale 100s mg)
- Material Validation (medium scale – 3 g and more)
  - grav. capacity
  - kinetics
  - cost assessment
  - H<sub>2</sub> purity
  - shelf-life

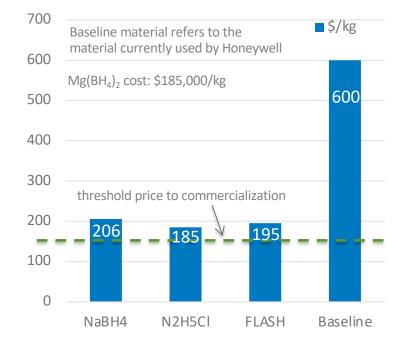
3. Fuel Cell Testing If material performance is validated, they proceed to fuel cell testing.

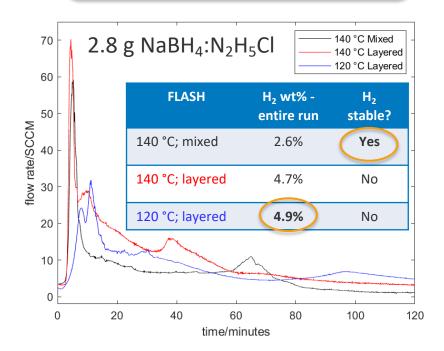


# Safety Planning and Culture

- Safety plan: This project was not required to submit a safety plan to the Hydrogen Safety Panel (HSP)
- Incidents and near misses: procedures for this project are aligned with NREL's and Honey-well's practice of tracking and reporting any near misses. So far, none have occurred.
- Best practices and lessons learnt: from the decade-long expertise from the NREL team working on hydrides and metal-hydrides, a list of best practice exists and is followed. This list will be amended to reflect lessons learnt from incidents and/or near misses. This exercise is supported by NREL's health and safety team. The same is true for Honeywell's policy.

- Prioritizing Safety & Analyzing Hazards for FLASH Materials.
  - Because they are/they have:
  - moisture sensitive,
  - pyrophoric because they are nano-size,
  - enhanced reactivity of the borohydride/salt mixtures,
  - release of toxic reaction products,
  - handling and testing occurs in:
  - air-free environments,
  - small quantities first,
  - sealed and air-tight containers.
  - Online and in-person training sessions occur for every new user who are shadowed until the understanding of safety procedures for this project are demonstrated.


### Accomplishments and Progress -FLASH cost and performance

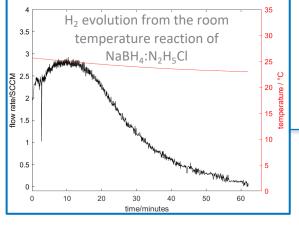

#### Technology Commercialization Fund

U.S. DEPARTMENT OF OFFICE OF Technology Transitions

### Cost-effective FLASH: NaBH<sub>4</sub>:N<sub>2</sub>H<sub>5</sub>Cl in 1:1 mole ratio

Hydrogen release: Competition between wt% and stability





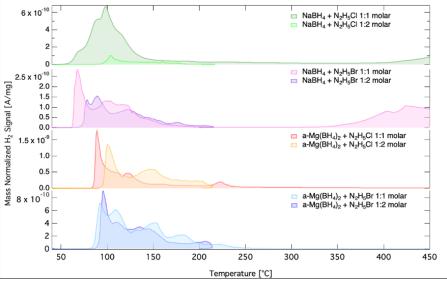

## Accomplishments and Progress -Fuel Evaluation Score Card

### Technology Commercialization Fund Science OF Technology Transitions

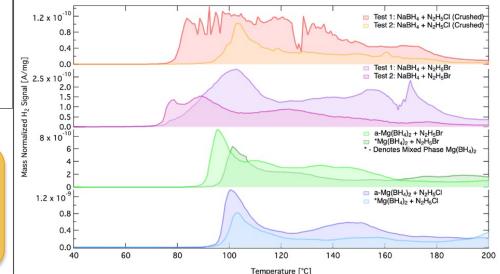
<u>Low-Temperature Thermolysis Reaction:</u> NaBH<sub>4</sub>  $\cdot$  N<sub>2</sub>H<sub>5</sub>Cl  $\rightarrow$  NaCl + N<sub>2</sub>H<sub>4</sub>BH<sub>3</sub> + 2 H<sub>2</sub>

|                             | Threshold target                                                           | NaBH <sub>4</sub> · N <sub>2</sub> H <sub>5</sub> Cl                                            |
|-----------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Hydrogen storage<br>density | 6 wt%                                                                      | 5 wt%                                                                                           |
| Safety                      | No health hazards or acute toxicity                                        | Acute oral, dermal, and inhalation<br>toxicity; Health hazard: Cat 1B (H350)                    |
| Storage                     | No venting                                                                 | Venting required if fuel is stored together                                                     |
| Transport                   | Air transport permitted                                                    | Air transport permitted; two components may need to be shipped in separate containers           |
| Material<br>compatibility   | Compatible with common<br>lightweight aerospace<br>materials such aluminum | Contains chloride, incompatible with difference and aluminum                                    |
| Hydrogen<br>contaminants    | Meets SAE J2719 and ISO 14687 requirements                                 | N <sub>2</sub> , NH <sub>3</sub> and N <sub>2</sub> H <sub>4</sub> may pose a risk $\checkmark$ |
|                             |                                                                            |                                                                                                 |




Pathways to address insufficient requirements are in place. Current score of our FLASH material: B



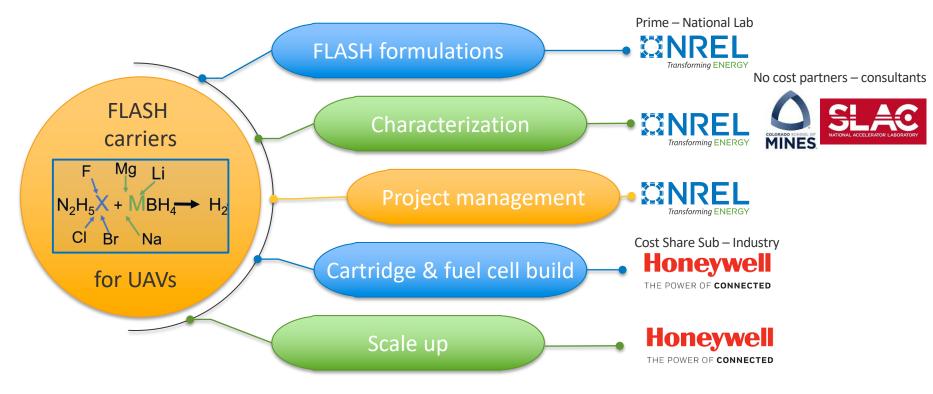

## Accomplishments and Progress -Impact of ratio and reproducibility

#### Technology Commercialization Fund

US DEPARTMENT OF ENERGY OF Technology Transitions



Reproducibility of H<sub>2</sub> release is variable, due to arbitrary mixing:
localized reaction zones
variable viscosity of the mixture Amount of H<sub>2</sub> released highly depends on the molar ratio of NaBH<sub>4</sub> and N<sub>2</sub>H<sub>5</sub>Cl.




### Responses to Previous Year's Reviewer Comments

#### This project was not reviewed last year

# **Collaboration and Coordination**

# Technology Commercialization Fund USA DEFARTMENT OF OFFICE OF Technology Transitions



### DEIA / Community benefit plan

- This project did not have a DEIA or community benefit plan
- This slide shows what the TCF – Phase II proposal will include



https://www.msudenver.edu/chemistry/msu-denver-postbaccalaureate-bridge-program-projects/

- MSU Denver, a minority serving institution, has built a postbaccalaureate bridge program.
- NREL is already a collaborator in this program.
- The program includes industrial partners who are willing to host interns.
- In Phase II, we plan to include internships at NREL and Honeywell for students from MSU Denver.

# Remaining Challenges & Barriers

Technology Commercialization Fund

U.S. DEPARTMENT OF OFFICE OF **ENERGY** OFFICE OF **Technology Transitions** 

|                             | Challenges and Barriers for NaBH <sub>4</sub> $\cdot$ N <sub>2</sub> H <sub>5</sub> Cl                    | Potential Solutions                                                                                                                                                                                                                                                                                                                             |
|-----------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hydrogen<br>storage density | 5 wt%                                                                                                     | <ul> <li>Optimized stacking of the materials</li> <li>Exchange N<sub>2</sub>H<sub>5</sub>Cl for NH<sub>3</sub>BH<sub>3</sub></li> </ul>                                                                                                                                                                                                         |
| Safety                      | Acute oral, dermal, and inhalation<br>toxicity; Health hazard: Cat 1B (H350)<br>presumed human carcinogen | <ul> <li>Potential engineering principle to minimize health and safety concerns:</li> <li>Handling only in air-free environments</li> <li>In case of cartridge being compromised, a water reservoir could be engineered to react the fuel before it can affect the environment</li> </ul>                                                       |
| Storage                     | Venting required if fuel is stored together                                                               | Physical barrier between borohydride and salt, e.g. carbon                                                                                                                                                                                                                                                                                      |
| Transport                   | Air transport permitted; two<br>components may need to be shipped in<br>separate containers               | Physical barrier between borohydride and salt, e.g. carbon                                                                                                                                                                                                                                                                                      |
| Material<br>compatibility   | Contains chloride, incompatible with aluminum                                                             | Exchange $N_2H_5Cl$ for $NH_3BH_3$ to remove the chloride                                                                                                                                                                                                                                                                                       |
| Hydrogen<br>contaminants    | $N_2$ , $NH_3$ and $N_2H_4$ may pose a risk                                                               | <ul> <li>Fuel cells often have a N<sub>2</sub> purification system to extract O<sub>2</sub> from the air, which could be integrated into the H<sub>2</sub> stream as well</li> <li>The above-mentioned changes (e.g. NH<sub>3</sub>BH<sub>3</sub>, addition of carbon) could change the reaction mechanism and the reaction products</li> </ul> |

# **Future Work**

 Technology Commercialization Fund

 Us department of ENERGY
 OFFICE OF Technology Transitions

- Implement and test the potential solutions to address the remaining challenges:
  - replace  $N_2H_5CI$  with  $NH_3BH_3$
  - add a material between the borohydride and the salt to form a physical barrier, e.g. carbon black
  - optimize the material stacking

- Remaining work in Phase I:
  - modeling of the cartridge
  - fuel cell test
  - final report

### Summary

- Due to high cost and supply chain issues, Mg(BH<sub>4</sub>)<sub>2</sub> has been discarded.
- Current estimates put the NaBH<sub>4</sub> · N<sub>2</sub>H<sub>5</sub>Cl at \$195/kg (target: \$150/kg, baseline: \$600/kg).
- Test at 100 mg and 2.8 g using mixing of NaBH<sub>4</sub>  $\cdot$  N<sub>2</sub>H<sub>5</sub>Cl yield ~2.5 wt% of stable H<sub>2</sub> delivery to the fuel cell.
- Implementing strategic stacking of the materials led to ~5 wt% of H2, but the delivery is sporadic and unstable.
- Partial dehydrogenation leads to hazardous NH<sub>3</sub>, N<sub>2</sub>H<sub>4</sub> impurities.