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Motivation: Are there undiscovered materials that could improve 
upon conventional H2 storage and generation technologies?

• High H2 gravimetric and/or volumetric density 
• Fast, reversible release near ambient T
• Practical/cost-effective

700 
bar vs.

Material X ?? Material Y ??
“Conventional”
1.2 V in theory
1.8 V in practice

“Conventional”
(Compressed gas)

H2 Storage objectives: H2 Generation objectives:

• Water-splitting using only renewable energy
• Practical/cost-effective

vs.
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Approach: How are new materials discovered?

Chemical intuition

Synthesize material

Characterize material

Test Performance

Experiments

First-principles theory

Run simulation & 
predict performance

Physics-based simulations

Seconds     Minutes        Hours           Days          Weeks        Months         Years         Forever

Experiments
Physics-based simulations

ML

Material property/training data

Convert materials to features 

Train a model:

Run model & 
predict performance

Machine learning (ML)
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Approach: Data science and machine learning techniques can…

Predict properties and 
elucidate design rules for 

optimal materials[1,2]

[1] Witman, Ling, Grant, Walker, Agarwal, Stavila, Allendorf. J. Phys. Chem. Lett., 11 (1), 2020
[2] Witman, Ling, Stavila, Wijeratne, Furukawa, Allendorf. Mol. Sys. Des. & Eng., 5, 2020
[3] Ek, Nygard, Pavan, Montero, Henry, Sorby, Witman, et al. Inorg. Chem., 60 (2), 2021
[4] Witman, Ek, Ling, Chames, Agarwal, Wong, Allendorf, Sahlberg, Stavila. Chem. Mater., 2021
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High-throughput screen materials 
orders of magnitude faster than 
experiments or simulations[3,4,5,6]

Accelerate physics-based 
simulations when lacking 

experimental training data[7]

=

[5] In preparation
[6] Ambrosini, Witman, McDaniel. Provisional Patent, 2020.
[7] In preparation

𝑷𝑷𝒆𝒆𝒆𝒆 = 𝒎𝒎𝒎𝒎 + 𝒃𝒃

Best material

Tools provide a roadmap for… 

H2 storage: Data-driven discovery of optimal hydrogen storage alloys
H2 generation: Data-driven discovery of liquid metals for water splitting
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H2 Storage Milestone #1: 
Explainable ML models predict metal hydride thermodynamics

6

(1) 𝐥𝐥𝐥𝐥(𝑷𝑷𝒆𝒆𝒆𝒆𝒐𝒐 /𝑷𝑷𝒐𝒐) target property

H2 Metal Hydride

(2) Compositional ML model

Features from composition:

�𝝂𝝂𝒑𝒑𝒑𝒑 = ∑𝑖𝑖 𝑓𝑓𝑖𝑖𝜈𝜈𝑖𝑖
𝜈𝜈𝑖𝑖 ≡ ground state vol. per atom

TiFe0.96Nb0.04 →
𝒙𝒙 = 𝜈̅𝜈𝑝𝑝𝑝𝑝 , 𝑟̅𝑟𝑐𝑐𝑐𝑐𝑐𝑐 , 𝜒̅𝜒 , …

From HydPARK database

ln(𝑃𝑃𝑒𝑒𝑒𝑒𝑜𝑜 /𝑃𝑃𝑜𝑜) = −
Δ𝐻𝐻

𝑅𝑅(25𝑜𝑜𝐶𝐶) +
Δ𝑆𝑆
𝑅𝑅

*Linear correlation with �𝝂𝝂𝒑𝒑𝒑𝒑: 

𝐥𝐥𝐥𝐥
𝑷𝑷𝒆𝒆𝒆𝒆𝒐𝒐

𝑷𝑷𝒐𝒐
≈ −𝒎𝒎 �𝝂𝝂𝒑𝒑𝒑𝒑 + 𝒃𝒃

(3) Model validation and explainability

*ML model (gradient boosting trees) 
can predict 𝐥𝐥𝐥𝐥(𝑷𝑷𝒆𝒆𝒆𝒆𝒐𝒐 /𝑷𝑷𝒐𝒐) with MAE = 1.5

Witman, Ling, Grant, Walker, Agarwal, Stavila, Allendorf. J. Phys. Chem. Lett., 11 (1), 2020
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H2 storage Milestone #2: 
ML-based discovery of destabilized high entropy alloy (HEA) hydrides
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(1) HEA overview:

 > 4 elements, ~ equimolar
 Defined lattice type
 Solid solution character necessitates a 

compositional ML model

(2) Enumerating refractory HEA space

𝐸𝐸 = {Al, Ti, V, Cr, Zr, Nb, Mo, Pd, Hf, Ta} 

𝐸𝐸
4 +

𝐸𝐸
5 +

𝐸𝐸
6 → 672 compositions

Far too many for experiments…

(3) Screening refractory HEA space

Destabilized hydrides experimentally confirmed!

Witman, Ek, Ling, Chames, Agarwal, Wong, Allendorf, Sahlberg, Stavila. Chem. Mater., 2021
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H2 Storage Milestone #3: 
Identify Pareto optimal HEA hydrides
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(1) Screening an expansive HEA space

𝐸𝐸 = {Mg, Al, Ti, V, Cr, Mn, Fe, Co, Ni, 
Cu, Zn, Zr, Nb, Mo, Pd, Hf, Ta} 

𝐸𝐸
4

+
𝐸𝐸
5

+
𝐸𝐸
6

→ 20,944 compositions

(2) Multiple ML property predictions

True Value

M
L 

Pr
ed

ic
tio

n

True Value

M
L 

Pr
ed

ic
tio

n
𝜟𝜟𝜟𝜟H/M

In preparation

Objectives / Quantity to maximize:
 Optimal thermodynamics 
 High volumetric capacity 
 High gravimetric capacity
 Raw material cost 

->      − Δ𝐻𝐻 − 27
->     H/M 
->     Hwt% 

(3) Identification of ~100 Pareto optimal materials

Pareto optimal

ML:  Seconds to identify 100 Pareto materials
Experiment:  Months to synthesize, characterize,        

and test 1 material
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H2 Generation Milestone #1: 
Data-driven down selection of liquid metals for water splitting
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Hybrid thermo/electrochemical concept Down selection of candidate LMS

2415 possible binaries

~100 w/melting below 850 K

Liquid Metal Solution (LMS) = ???

~3 in laboratory testing

~15 w/desired O-LMS 
electrochemical stability

ML modeling of liquidous curves

Mining Pourbaix diagrams 
from Materials Project

Cost/practicality

Thermo:
Renewable Heat
(T < 850 K)

Electro:
Renewable 
Electrons
(V < 1.2)

Ambrosini, Witman, McDaniel. Provisional Patent, 2020.
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H2 Storage Applications
 Identify Pareto optimal hydrides across all possible HEA composition space
 Can they play a practical role in the stationary (or even transportation) space?

H2 Generation Applications
 Improve hybrid concept by going beyond binary LMS (ternary, quaternary, …) 
 Graph neural networks to model defects in STCH materials across all composition space

Methods/Data
 Develop ML surrogate models to accelerate previously intractable DFT simulations
 Improve quality of experimental training data via standardized data management tools

Planned H2 research directions (0-5 year aspirations) include:

More data + Improved ML models
 More accurate and faster materials predictions

 More efficient use of experimental resources

 Faster hydrogen technology adoption
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Thank you for your attention. 

Questions?

Contact: mwitman@sandia.gov
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