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Project Goals

• Evaluate the capability and design of materials-based stationary bulk 
hydrogen storage for backup power applications (starting with fuel cell 
powered data centers)

• Leverage technoeconomic models developed by NREL to understand 
the value proposition of hydrogen and fuel cells for data centers to 
determine a priority list of reversible materials

• Develop a detailed model to identify validate the suitability of a metal 
hydride-based storage system and identify parameters and designs that 
yield the most significant improvements in performance
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Overview
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• Barriers addressed
– TEA analysis for cost challenges

– Heat source availability and system size

– Ability of system to supply H2 flowrate to power a 20MW 
data center for 72 hours at the required fuel cell pressure

– Identify transient heat required rate for hydrogen 
discharge

Barriers

• Project lead: Bruce Hardy, SRNL

• Co-PI: Mark Ruth, NREL

• Savannah River National Laboratory

• National Renewable Energy Laboratory

Partners

FY20 DOE Lab Call Project:
• Project Start Date: 10/01/2020

• FY20 DOE Funding (if applicable): $0 

• FY21 Planned DOE Funding (if 

applicable): $500K ($300K 

SRNL/$200K NREL)

• Total DOE Funds Received to Date**: 

$500K** Since the project started

Timeline and Budget



Relevance/Potential Impact
• Fuel cells are a potential means supplying for backup power (in renewable form) to 

a data center

• Although there have been demonstrations and case studies for materials-based 
bulk storage of H2, none have reported the value-proposition from a techno-
economic perspective

• The March 2019, the DOE HFTO workshop focused on understanding the R&D gaps 
and business case for fuel cell powered data centers

• Hydrogen storage was identified as an areas for advancement to increase 
acceptance of fuel cells for primary or back-up power sources for data centers
– Although viable, compressed and liquid H2 had shortcomings that could be cost-

prohibitive for liquid or cryogenic H2

– Metal hydrides have features that have the potential for promising and 
competitive solutions
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Approach

Why Backup Scenario?
• Diesel generators are becoming more difficult to permit

• Air quality
• Noise

• A fuel cell backup system
• Least disruptive to current data center designs
• Less hydrogen needed on annual basis (though individual 

events could still stress current merchant market)
Why 5 MW data center? 
• 10,000+ data centers in this size range
• Will likely include backup systems (<1 MW may not)
• Corresponds to class (high-end) of data center that may value 

efficiency, clean power
• May include separated facilities with thermal integrations

100,000+

50-kW unit 
installations 

10,000+

1-MW to 30-MW 
unit installations 
with 10-year life 

cycles

100+

100-MW unit 
installations with 

10-year life 
cycles. 

Number of sites for size rangeHydrogen fuel cells &  metal 
hydride storage to provide data 

center backup power
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Approach

Techno-economic Analysis

• Initial capital cost comparison for comparing to installation 
cost of diesel generators (backup scenario)

• Levelized cost of energy (LCOE) analysis for better 
understanding of scenario impact

Performance/integration analysis

• Characteristics needed for system design

• Thermal options for integration with either fuel cell or data 
center as source of heat

Space considerations

• Advantages of siting metal hydrides for stationary storage 
versus gaseous or liquid

• Five initial layouts that include delivered H2, onsite H2

production, and trailers versus stationary storage options

Analysis includes techno-economic 

analysis, performance/integration, 

and space considerations

Storage setbackStorage setback

Buffer zone/buildings/parkingBuffer zone/buildings/parking

Bay setbackBay setback

Driving AreaDriving Area
Terminal BaysTerminal Bays

Terminal BaysTerminal Bays

Infrastructure layout – metal hydrides

Data center load with thermal

Storage
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Accomplishments

• Preliminary results for TEA: capital cost, 
LCOE
– Assumptions still in progress
– Metal hydride costs $1,430/kg

Initial TEA results indicate 
cost challenges
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Accomplishments Preliminary results show fuel cells 
are the priority heat source

• Hydrogen flow rate and flow ramping 
required from metal hydride storage is 
dependent on IT load demand

• Results shown are based on a 24 hour, 
carbon aware data center load

• Fuel cell shows greater thermal output 
availability compared to the data center 
system

• Output heat can be captured and assist 
in keeping the metal hydride storage 
system at the required thermal setpoints
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Accomplishments

• Preliminary footprint calculations for 5 initial 
scenarios 

• Layouts adapted from HDSAM
• Space allowances adapted from HDSAM/NFPA2
• Scenario: 22,526 kg H2

Metal hydrides potentially 
have the smallest footprint

Scenario

Storage 
Setback 

[m2]

Storage 
length  

[m]
Storage 

width [m]
Storage 

area [m2]
Buffer 
[m2]

Terminal 
Bay 

Length 
[m]

Terminal 
Bay area 

[m2]
Driving 

area [m2]

Bay 
Setback 

[m2]
PEMEC 

Plant [m2]
Total Area 

[m2]

GH2 Stationary 
Storage 3,701 103 12 1,226 2,575 31 677 1,691 2,141 0 12,012

GH2 + PEMEC 3,701 103 12 1,226 2,575 5 110 405 1,110 613 9,740

GH2 Trailers 0 0 0 0 3,125 125 625 3,105 3,555 0 10,410

LH2 Stationary 
Storage 2,806 38 38 1,444 2,100 12 269 1,413 1,413 0 9,445

MH2 Stationary 
Storage 1,625 14 10 148 1,504 31 677 1,691 1,691 0 7,337

• Metal Hydride assumptions
o (Ti0.97Zr0.03)1.1Cr1.6Mn0.4 (preliminary 

model)
o MH2 Volume supplied by SRNL, 1 tank assumed
o Distance around storage and time to charge 

taken from GH2 assumptions



Preliminary Models for Storage System

• Simultaneously solves coupled ODE’s:

– Mass and energy conservation 

– Chemical kinetics

– Thermodynamics

– Ancillary constitutive properties

• Calculates

– Required metal hydride mass and volume

– Temperature and pressure transients

– Required transient heating power

• Includes temperature of supplied heat

– Transient depletion of hydrogen remaining in 

metal hydride

• Needed to efficiently determine the required amount 

of metal hydride
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Approach

Metal Hydride 

Vessel

Hydrogen 

Storage Vessel

Pressure 

Regulator

Fuel Cell

For Temperature 

Swing Operation

Schematic of Storage System

ሶ𝑄



Storage System Operation
• Hydrogen desorption via pressure swing or temperature swing

– Initial temperature is ambient (assumed to be 295K)

– Initial pressure is equilibrium pressure at the ambient temperature

– Operates for 72 hours

– Supply 6 bar of pressure to fuel cell

– Total of 90,000 kg of hydrogen is required to power the data center

– Metal hydride expands on uptake of hydrogen & contracts on discharge

• Pressure swing

– Metal hydride has high pressure at ambient temperature

– Hydrogen is discharged while heat is supplied to the MH to maintain constant 

temperature

• Temperature Swing

– Metal hydride is heated to raise pressure to meet fuel cell requirements

• Pressure transient from initial to operating pressure is specified

– After reaching target pressure, discharge is initiated

– Heat is supplied to maintain pressure
11
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Pressure Swing Model
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• Metal Hydride (Ti0.97Zr0.03)1.1Cr1.6Mn0.4

• Duration 72 hours 

• H2 Outflow 1249 kg/hr

• Equilibrium Pressure at 295K is 72.4 bar

• Metal Hydride Volume is 3050 m3

• Metal Hydride Mass is 9.4X106 kg

Accomplishments



Temperature Swing Model
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• Metal hydride 1/3Na3AlH6↔NaH+1/3 Al+1/2 H2

• Duration 72 hours 

• Pressure transient is specified

• At 295K equilibrium pressure is ~ 0.01 bar

• H2 outflow 1250 kg/hr

• Metal hydride volume is 9009 m3

• Metal hydride mass is 3.05X106 kg

Accomplishments

System would require a tank of 

pressurized H2 for rapid starting

100
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104

106

108

1010

1012



Collaboration and Coordination
• The SRNL/NREL team manages their respective personnel, budgets and coordinates tasks 

and schedules between both organizations to meet program objectives

– Meetings are held as needed to update progress and address technical risks based on progress

• NREL Tasks
– Development and application of a techno-economic modeling framework for evaluating materials and system 

properties against bulk application targets

– Techno-economic assessment operating strategy, capital costs for the electrolysis-storage-fuel cell system, estimation 

of renewable electricity costs  summarized in a levelized cost of electricity (LCOE) provided to the data center that can 

then be compared with other options summarized in a levelized cost of electricity (LCOE) for comparison with other 

options

• SRNL Tasks
– Development and application of numerical model for a materials-based bulk storage system

– Prediction of H2 storage system size, mass and operating parameters for input to the NREL techno-economic analysis

– Determination of preferred modes of operation and storage material properties for optimal thermodynamic efficiency 

and cost

– Review existing codes and standards for stationary storage of H2, such as ASME Boiler and Pressure Vessel Code 

and NFPA 2
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Remaining Challenges and Barriers
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• Maintain acceptable system cost in terms of LCOE

– Improve analysis of MH charging strategies

– Improve characterization of opportunities to use available heat

• Identify suitable MH properties 

– To achieve fuel cell supply pressure 

– Reasonable initial pressure

– High hydrogen capacity

– Low reaction enthalpy (to have discharge with reasonable heating power)

• Determine system design that minimizes required MH volume and mass



Proposed Future Work
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Any proposed future work is subject to change based on funding levels

All Items are proposed as follow-ons to the current project

• Develop detailed spatially dependent transient model to determine rate of 

heat transfer to MH, as opposed to assuming instant, uniform distribution of 

power

• Perform technoeconomic analysis of heat exchangers for MH bed -

• Perform technoeconomic analysis of competitive MH’s

• Determine range of desirable MH properties and compare to existing MH’s 

– Includes MH mixtures

• Obtain MH data, suitable for engineering design, for a range of MH’s 

• Optimize system operation, i.e. temperature swing, pressure swing and 

hybrid systems with respect of LCOE and thermodynamic efficiency

• Improve monetization estimates for land area at data centers

• Extend program from investigation of back-up fuel cell power to continuous 

power operation and 100% green energy opportunities



Summary
• Preliminary model is working

– 2 types of metal hydrides were modeled 

• Complex (temperature swing) and intermetallic (pressure swing) MH 

• Not intended to be optimal, but had available properties

• Found that for simplistic bulk system (one large MH vessel) a pressure swing is favorable 

due to:
– Immediately available fuel cell pressure

– Lower heating power

• Other possibilities
– Hybrid pressure swing/temperature swing system

– Temperature swing system that includes

• An H2 pressure storage tank 

• And/or array of Individual small MH vessels that can be independently heated (smaller 

sequential power demand)

• Technoeconomic analysis 
– Initial techno-economic results identified breakdown of cost challenges 

– Preliminary results show fuel cells are the principal source of waste heat for the data center

– Indicated that metal hydrides potentially have the smallest footprint

17
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Technical Backup and Additional Information



Technology Transfer Activities

• NA
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Progress Toward DOE Targets or Milestones
• Milestone 1, End Date 12/31/2020

– Successful screening of materials and system (containment and BOP), operating at large scale, based on application 

requirements, that would be likely candidates to demonstrate a viable path to reach the techno-economic targets compared 

to traditional bulk hydrogen storage.

– Performed initial screening of materials for a 20MW data center.

• Milestone 2, End Date 3/31/2021

– Presentation on the initial TEA of an optimal data center using a reversable material-based hydrogen storage system 

including the LCOE of the computational units.

– Techno-economic analysis was used to compare LCOE and capital cost with bulk hydrogen storage.

• Milestone 3, End Date 6/30/2021

– Provide a detailed system model (material, containment and BOP), operating at large scale, based on application 

requirements, demonstrating a viable path to reach the techno-economic targets compared to traditional bulk hydrogen 

storage.

– Developed preliminary full-scale model and used it to describe system operation for pressure-swing and 

temperature-swing hydrogen discharge.

• Milestone 3, End Date 6/30/2021

– Publish a gap assessment report that outlines an R&D pathway which will include the identification of any required material 

and system R&D gaps that should be addressed for a materials-based stationary bulk storage to meet DOE’s Ultimate  

high-volume cost targets for bulk stationary storage ranging from $450 - $600/kg-H2 stored.

– Currently using detailed model to identify gaps in available MH properties that preclude meeting targets for cost 

and performance targets.  
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