Determining the Value Proposition of Materials-based Hydrogen Storage for Stationary Bulk Storage of Hydrogen

> Bruce Hardy (PI, SRNL) Mark Ruth (Co-PI, NREL)

Scott McWhorter (SRNL) Genevieve Saur (NREL)

Spencer Gilleon (NREL) Charles James (SRNL) Ragaiy Zidan (SRNL)

DOE project award # WBS 4.4.0.905 June 11, 2021

DOE Hydrogen Program 2021 Annual Merit Review and Peer Evaluation Meeting

> Savannah River National Laboratory®

Project ID: ST288

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Goals

- Evaluate the capability and design of materials-based stationary bulk hydrogen storage for backup power applications (starting with fuel cell powered data centers)
- Leverage technoeconomic models developed by NREL to understand the value proposition of hydrogen and fuel cells for data centers to determine a priority list of reversible materials
- Develop a detailed model to identify validate the suitability of a metal hydride-based storage system and identify parameters and designs that yield the most significant improvements in performance

Overview

Timeline and Budget

FY20 DOE Lab Call Project:

- Project Start Date: 10/01/2020
- FY20 DOE Funding (if applicable): \$0
- FY21 Planned DOE Funding (if applicable): \$500K (\$300K SRNL/\$200K NREL)
- Total DOE Funds Received to Date**: \$500K** Since the project started

Barriers

- Barriers addressed
 - TEA analysis for cost challenges
 - Heat source availability and system size
 - Ability of system to supply H2 flowrate to power a 20MW data center for 72 hours at the required fuel cell pressure
 - Identify transient heat required rate for hydrogen discharge

Partners

- Project lead: Bruce Hardy, SRNL
- Co-PI: Mark Ruth, NREL
- Savannah River National Laboratory
- National Renewable Energy Laboratory

Relevance/Potential Impact

- Fuel cells are a potential means supplying for backup power (in renewable form) to a data center
- Although there have been demonstrations and case studies for materials-based bulk storage of H₂, none have reported the value-proposition from a technoeconomic perspective
- The March 2019, the DOE HFTO workshop focused on understanding the R&D gaps and business case for fuel cell powered data centers
- Hydrogen storage was identified as an areas for advancement to increase acceptance of fuel cells for primary or back-up power sources for data centers
 - Although viable, compressed and liquid H_2 had shortcomings that could be cost-prohibitive for liquid or cryogenic H_2
 - Metal hydrides have features that have the potential for promising and competitive solutions

Hydrogen fuel cells & metal hydride storage to provide data center backup power

Why Backup Scenario?

- Diesel generators are becoming more difficult to permit
 - Air quality
 - Noise
- A fuel cell backup system
 - Least disruptive to current data center designs
 - Less hydrogen needed on annual basis (though individual events could still stress current merchant market)

Why 5 MW data center?

- 10,000+ data centers in this size range
- Will likely include backup systems (<1 MW may not)
- Corresponds to class (high-end) of data center that may value efficiency, clean power
- May include separated facilities with thermal integrations

Table 4. 2014 PUE by Space Type

Space Type	IT	Transformer	UPS	Cooling	Lighting	Total PUE	
Closet	1	0.05	-	0.93	0.02	2.0	
Room	1	0.05	0.2	1.23	0.02	2.5	
Localized	1	0.05	0.2	0.73	0.02	2.0	
Midtier	1	0.05	0.2	0.63	0.02	1.9	
High-end	1	0.03	0.1	0.55	0.02	1.7	
Hyperscale	1	0.02	-	0.16	0.02	1.2	

Analysis includes techno-economic analysis, performance/integration, and space considerations

Techno-economic Analysis

- Initial capital cost comparison for comparing to installation cost of diesel generators (backup scenario)
- Levelized cost of energy (LCOE) analysis for better understanding of scenario impact

Performance/integration analysis

- Characteristics needed for system design
- Thermal options for integration with either fuel cell or data center as source of heat

Space considerations

- Advantages of siting metal hydrides for stationary storage versus gaseous or liquid
- Five initial layouts that include delivered H₂, onsite H₂ production, and trailers versus stationary storage options

Data center load with thermal

Infrastructure layout – metal hydrides

Initial TEA results indicate cost challenges

- Preliminary results for TEA: capital cost, LCOE
 - Assumptions still in progress
 - Metal hydride costs \$1,430/kg

Preliminary results show fuel cells are the priority heat source

- Fuel cell shows greater thermal output availability compared to the data center system
- Output heat can be captured and assist in keeping the metal hydride storage system at the required thermal setpoints

- Hydrogen flow rate and flow ramping required from metal hydride storage is dependent on IT load demand
- Results shown are based on a 24 hour, carbon aware data center load

Metal hydrides potentially have the smallest footprint

- Preliminary footprint calculations for 5 initial scenarios
- Layouts adapted from HDSAM
- Space allowances adapted from HDSAM/NFPA2
- Scenario: 22,526 kg H₂

- Metal Hydride assumptions
 - (Ti0.97Zr0.03)1.1Cr1.6Mn0.4 (preliminary model)
 - $\circ~$ MH $_2$ Volume supplied by SRNL, 1 tank assumed
 - Distance around storage and time to charge taken from GH₂ assumptions

Scenario	Storage Setback [m2]	Storage length [m]	Storage width [m]	Storage area [m2]	Buffer [m2]	Terminal Bay Length [m]	Terminal Bay area [m2]	Driving area [m2]	Bay Setback [m2]	PEMEC Plant [m2]	Total Area [m2]
GH ₂ Stationary											
Storage	3,701	103	12	1,226	2,575	31	677	1,691	2,141	0	12,012
GH ₂ + PEMEC	3,701	103	12	1,226	2,575	5	110	405	1,110	613	9,740
GH ₂ Trailers	0	0	0	0	3,125	125	625	3,105	3,555	0	10,410
LH ₂ Stationary											
Storage	2,806	38	38	1,444	2,100	12	269	1,413	1,413	0	9,445
MH ₂ Stationary											
Storage	1,625	14	10	148	1,504	31	677	1,691	1,691	0	7,337

Preliminary Models for Storage System

- Simultaneously solves coupled ODE's:
 - Mass and energy conservation
 - Chemical kinetics
 - Thermodynamics
 - Ancillary constitutive properties
- Calculates
 - Required metal hydride mass and volume
 - Temperature and pressure transients
 - Required transient heating power
 - Includes temperature of supplied heat
 - Transient depletion of hydrogen remaining in metal hydride
 - Needed to efficiently determine the required amount of metal hydride

Schematic of Storage System

Storage System Operation

- Hydrogen desorption via pressure swing or temperature swing
 - Initial temperature is ambient (assumed to be 295K)
 - Initial pressure is equilibrium pressure at the ambient temperature
 - Operates for 72 hours
 - Supply 6 bar of pressure to fuel cell
 - Total of 90,000 kg of hydrogen is required to power the data center
 - Metal hydride expands on uptake of hydrogen & contracts on discharge
- Pressure swing
 - Metal hydride has high pressure at ambient temperature
 - Hydrogen is discharged while heat is supplied to the MH to maintain constant temperature
- Temperature Swing
 - Metal hydride is heated to raise pressure to meet fuel cell requirements
 - Pressure transient from initial to operating pressure is specified
 - After reaching target pressure, discharge is initiated
 - Heat is supplied to maintain pressure

Pressure Swing Model

- Metal Hydride (Ti0.97Zr0.03)1.1Cr1.6Mn0.4
- Duration 72 hours

National Laboratory®

- H₂ Outflow 1249 kg/hr
- Equilibrium Pressure at 295K is 72.4 bar
- Metal Hydride Volume is 3050 m³
- Metal Hydride Mass is 9.4X10⁶ kg

Temperature Swing Model

80

80

Collaboration and Coordination

- The SRNL/NREL team manages their respective personnel, budgets and coordinates tasks and schedules between both organizations to meet program objectives
 - Meetings are held as needed to update progress and address technical risks based on progress
- NREL Tasks
 - Development and application of a techno-economic modeling framework for evaluating materials and system
 properties against bulk application targets
 - Techno-economic assessment operating strategy, capital costs for the electrolysis-storage-fuel cell system, estimation
 of renewable electricity costs summarized in a levelized cost of electricity (LCOE) provided to the data center that can
 then be compared with other options summarized in a levelized cost of electricity (LCOE) for comparison with other
 options
- SRNL Tasks
 - Development and application of numerical model for a materials-based bulk storage system
 - Prediction of H₂ storage system size, mass and operating parameters for input to the NREL techno-economic analysis
 - Determination of preferred modes of operation and storage material properties for optimal thermodynamic efficiency and cost
 - Review existing codes and standards for stationary storage of H2, such as ASME Boiler and Pressure Vessel Code and NFPA 2

Remaining Challenges and Barriers

- Maintain acceptable system cost in terms of LCOE
 - Improve analysis of MH charging strategies
 - Improve characterization of opportunities to use available heat
- Identify suitable MH properties
 - To achieve fuel cell supply pressure
 - Reasonable initial pressure
 - High hydrogen capacity
 - Low reaction enthalpy (to have discharge with reasonable heating power)
- Determine system design that minimizes required MH volume and mass

Proposed Future Work

All Items are proposed as follow-ons to the current project

- Develop detailed spatially dependent transient model to determine rate of heat transfer to MH, as opposed to assuming instant, uniform distribution of power
- Perform technoeconomic analysis of heat exchangers for MH bed -
- Perform technoeconomic analysis of competitive MH's
- Determine range of desirable MH properties and compare to existing MH's
 - Includes MH mixtures
- Obtain MH data, suitable for engineering design, for a range of MH's
- Optimize system operation, i.e. temperature swing, pressure swing and hybrid systems with respect of LCOE and thermodynamic efficiency
- Improve monetization estimates for land area at data centers
- Extend program from investigation of back-up fuel cell power to continuous power operation and 100% green energy opportunities

Summary

- Preliminary model is working
 - 2 types of metal hydrides were modeled
 - Complex (temperature swing) and intermetallic (pressure swing) MH
 - Not intended to be optimal, but had available properties
- Found that for simplistic bulk system (one large MH vessel) a pressure swing is favorable due to:
 - Immediately available fuel cell pressure
 - Lower heating power
- Other possibilities
 - Hybrid pressure swing/temperature swing system
 - Temperature swing system that includes
 - An H₂ pressure storage tank
 - And/or array of Individual small MH vessels that can be independently heated (smaller sequential power demand)
- Technoeconomic analysis
 - Initial techno-economic results identified breakdown of cost challenges
 - Preliminary results show fuel cells are the principal source of waste heat for the data center
 - Indicated that metal hydrides potentially have the smallest footprint

Technical Backup and Additional Information

Technology Transfer Activities

• NA

Progress Toward DOE Targets or Milestones

- <u>Milestone 1, End Date 12/31/2020</u>
 - Successful screening of materials and system (containment and BOP), operating at large scale, based on application requirements, that would be likely candidates to demonstrate a viable path to reach the techno-economic targets compared to traditional bulk hydrogen storage.
 - Performed initial screening of materials for a 20MW data center.
- Milestone 2, End Date 3/31/2021
 - Presentation on the initial TEA of an optimal data center using a reversable material-based hydrogen storage system including the LCOE of the computational units.
 - Techno-economic analysis was used to compare LCOE and capital cost with bulk hydrogen storage.
- Milestone 3, End Date 6/30/2021
 - Provide a detailed system model (material, containment and BOP), operating at large scale, based on application requirements, demonstrating a viable path to reach the techno-economic targets compared to traditional bulk hydrogen storage.
 - Developed preliminary full-scale model and used it to describe system operation for pressure-swing and temperature-swing hydrogen discharge.
- Milestone 3, End Date 6/30/2021
 - Publish a gap assessment report that outlines an R&D pathway which will include the identification of any required material and system R&D gaps that should be addressed for a materials-based stationary bulk storage to meet DOE's Ultimate high-volume cost targets for bulk stationary storage ranging from \$450 - \$600/kg-H2 stored.
 - Currently using detailed model to identify gaps in available MH properties that preclude meeting targets for cost and performance targets.

