Hydrogen Storage System Modeling: Public Access, Maintenance, and Enhancements

Team: Sam Sprik (PI), Kriston Brooks, Carina Grady, and Matthew Thornton

DOE Hydrogen Program

2022 Annual Merit Review and Peer Evaluation Meeting

June 6-8, 2022

Project ID: ST008

DOE WBS #: NREL - 4.2.0.502

PNNL - 4.2.0.702 SRNL - 4.2.0.902

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Project Goal

The overall vision of this project is to provide ownership and support for maintaining existing materialbased hydrogen storage systems models. This incudes making models accessible to the research community through a public web page and updating and enhancing storage systems models to support material developers in assessing their materials relative DOE vehicle-level targets. Key elements for FY22:

- Continue to update and enhance existing models for broader application and user friendliness.
- Develop tools to evaluate the performance of hydrogen storage materials developed under HyMARC activities or other fundamental hydrogen storage materials discovery research.
- Expand the application of current hydrogen storage models beyond light-duty vehicles to include medium- and heavy-duty vehicles and mining and agricultural vehicles.
- Model alternatives to material-based systems including compressed and liquefied H₂.

Overview

Timeline

Start: October 1, 2015

• End: September 30, 2022*

Partners

- National Renewable Energy Laboratory (NREL)
- Savannah River National Laboratory (SRNL)
- Pacific Northwest National Laboratory (PNNL)
- Hydrogen Materials Advanced Research Consortium (HyMARC)

Budget

- Total DOE Funds Received to Date**:
 \$2,387,000
 - FY16 DOE Funding: \$336,000
 - FY17 DOE Funding: \$389,000
 - FY18 DOE Funding: \$375,000
 - FY19 DOE Funding: \$275,000
 - FY20 DOE Funding: \$255,000
 - FY21 DOE Funding: \$497,000
 - FY22 DOE Funding: \$260,000

*Project continuation and direction determined annually by DOE **Since the project started

Pacific Northwest

Collaborative effort to manage and enhance existing hydrogen storage system models and develop new models to support material developers in assessing their materials relative to DOE vehicle-level targets

- Transfer knowledge from vehicle level system engineering studies to future materials research.
- Manage the hydrogen storage system model dissemination within the HyMARC web page.
- Manage, update, enhance, and validate the modeling framework and the specific storage system models developed for metal hydrides, adsorbents, and chemical hydrogen storage materials.
- Develop models that will accept direct materials property inputs and can be measured by materials researchers.
- <u>Ultimate Goal</u>: Provide validated modeling tools that researchers will use to evaluate the performance of their new materials in light-, medium-, and heavy-duty vehicles relative to the available DOE Technical Targets.

Relevance – Addressing Barriers with Models

Barriers	Model Addressing Barrier
A. System Weight and Volume	System Estimators
B. System Cost	System Estimators Tank Volume/Cost Model
C. Efficiency	Framework Model - Onboard Efficiency - Fuel Economy Round Trip Efficiency Estimator
E. Charging/Discharging Rates	Framework Model Refueling Model
I. Dispensing Technology	Framework Model - Initial and Final System Conditions Refueling Model
K. System Life-Cycle Assessment	All Models

Relevance – Improving Model Utilities for Materials Researchers

Modeling Tools Available or In Progress

Framework Model with:

- Physical Storage
- Compressed/Cryo-Compressed H₂
- Chemical Hydrogen (CH)
- Adsorbent (AD)
- Metal Hydride (MH)
- Liquid Hydrogen (LH)

Stand-Alone System Design Tools:

- Adsorbent (AD)
- Chemical Hydrogen (CH)
- Metal Hydride (MH)
- Compressed/Cryo-Compressed H₂

Additional Tools/Models:

- MH Acceptability Envelope (MHAE)
- Tank Volume/Cost Model (Tankinator)
- AD Isotherm Fitting Tool
- MH Refueling Model
- Round-Trip Efficiency Estimator

Finite Element Models:

- Metal Hydride (MH) Finite Element (MHFE)
- Adsorbent (AD) HexCell and MATI

UTRC/NREL	
SRNL/NREL	Light-, medium-, and heavy-duty vehicles
PNNL/NREL	FY22: Plans to expand to agricultural and mining vehicles
SRNL/NREL	
PNNL/NREL	
PNNL/NREL	FY22: Plan to expand to liquid H_2

Note: Updates in blue text

SRNL	
PNNL	Light-, medium-, and heavy-duty vehicles
PNNL	MH includes high temperature alloys
SRNL	

SRNL

PNNL

SRNL

PNNL

SRNL

SRNL

- High T alloys and flags to maintain in bounds
- Model developed and validated with NaAlH₄
- PNNL Preliminary model developed

7 UTRC: United Technologies Research Center

Accomplishments and Progress – Design Tools and Framework Estimate Allow Evaluation of Hydrogen Storage Systems

Capabilities:

- Expanded Tankinator to include additional high temperature alloys and flags to ensure the inputs and outputs are within range
- Developed a refueling model for metal hydrides to understand the interplay between heat transfer and kinetics in the H₂ storage tank
- Updated the storage models in the Framework to include medium- and heavy-duty vehicles
- Updated stand-alone models to include combined light/medium/heavy-duty vehicles and volume- and usable H₂ mass-based sizing
- Developed a spreadsheet-based round trip efficiency calculator

Accomplishments and Progress – Tankinator Model Update

- The current release version of Tankinator is v3.0
 - This version is in use by researchers worldwide
 - -Only AI 6061 and 316SS had temperature dependency
- Expanding Tankinator capability to estimate Type 1 tanks at elevated temperature (up to 350°C, depending on material)
 - -Use to reduce tank mass for high temperature metal hydrides
 - Increased number of material options and the temperaturedependent data for the existing material options
- Developing a new formal release version of Tankinator (v4.0)
 - -Will have realistic end cap geometries
 - Automatic recognition of cases that are "out of bounds" for a reasonable estimate

Tankinator v3.5 Type 1 Material List

- 1.6061_T6_Aluminum
- 2. A2618_Aluminum
- 3. A4032_Aluminum
- 4. NASA_380_Aluminum
- 5. AI-MS89_Aluminum
- 6. 316_Stainless_Steel
- 7.4340_Alloy_Steel

Targeted Applications: Light/Medium/Heavy-Duty Vehicle Application

System Configuration	H ₂ Required (kg)	NaAlH ₄ Needed (kg)	Internal/ Saddle Tanks	Rear Tanks	System Volume (L)
Light-Duty	5.6	131	1	0	405
Medium-Duty	20	471	2	0	1330
Heavy-Duty	60	1413	2	2	3910

Accomplishments and Progress – Framework Estimate Allows Evaluation

of Hydrogen Storage Systems

Framework Results: Heavy-Duty Vehicle

- Drive Cycle: HHDDT composite (300 kW max)
- System: 2 saddle tanks, 2 rear tanks
 - Pressure and temperature spike after one tank is empty and as the next begins heating
 - Pressure cannot drop below 5 bar or the drive cycle stops

Result	Value	Units
Useable H ₂	55.5	kg
Onboard efficiency	69%	
Distance traveled	430	miles
Fuel economy	5.3	mpgge

Accomplishments and Progress – Framework Estimate Allows Evaluation of Hydrogen Storage Systems

Framework Results: Light-Duty Vehicle

- System design is driven by startup of each MH tank
 - Higher pressure allows longer start-up time to meet drive cycle
 - Higher pressure increases the temperature, resulting in a heavier system
 - Temperature/pressure relationship determined by thermodynamics/ kinetics

Accomplishments and Progress – Stand-Alone Model and Framework Allow

Evaluation of Hydrogen Storage Material

SNL Analysis of Materials: Bulk and Nano-Scaled 2LiH₂/Mg(NH₂)₂

Property	Light-Dut	y Vehicle	Heavy-Duty Vehicle		
Metal Hydride		2LiH ₂ /M	$g(NH_2)_2$		
Tank Material		AĪ-MS	S-89		
Kinetics Augmentation		10	Х		
Initial Pressure (bar)	5	0	10	0	
Drive Cycle	UD	DS	(HHDDT) Cruise	
Input Useable H ₂ (kg)	5.	.6	60)	
Material Inputs	Bulk	Nano	Bulk	Nano	
H ₂ Capacity (g/g)	0.049	0.023	0.049	0.023	
Thermal Conductivity (W/m/K)	0.92	1.09	0.92	1.09	
Density (kg/m ³)	1230	840	1230	840	
Sizing Routine Design Results	Bulk	Nano	Bulk	Nano	
Number of Tanks	1	1	3	7	
Mass of Tanks	48	128	1236	3322	
Hydride Mass (kg)	144	307	1546	3293	
System Mass (kg)	274	536	3440	7490	
System Volume (L)	261	668	2932	7753	
Output Useable H ₂ (kg)	5.3	5.3	58	63	
Framework Drive Cycle Results	Bulk	Nano	Bulk	Nano	
Fuel Economy (mpgge)	43.5	39.4	5.9	5.4	
Onboard Efficiency (%)	72%	68%	74%	73%	
Distance Traveled (miles)	443	423	463	461	

- **Purpose**: Estimate time and temperature profile of the tank during refueling
- How it works:
 - For a given feed pressure and initial temperature
 - Calculate H₂ uptake, temperature, and heat flux as a function of time
 - Based on 4th-order Runge-Kutta integration
 - Lumped capacitance model with heat transfer hA term (W/K)
 - Provide heating/cooling reach appropriate temperatures but remove excess heat
- Model NaAlH₄ first step hydrogenation
 - 60 kg MH
 - 100 bar pressure
 - 38°C initial temperature

• Van't Hoff Equilibrium pressure and temperature drive the refueling process

$$P_{eq,A} = P_{ref} exp\left[\frac{\Delta H_A}{RT} - \frac{\Delta S_A}{R}\right]$$

• Kinetic rate sufficient to absorb the hydrogen $r_{H2} = k_A(T) f_{yA}(y) f_{pA}(P)$ where: Absorption: $k_A = K_A \exp\left[\frac{-E_A}{RT}\right]$

Concentration Driving Force: $f_{yA}(y) = (y_{eA} - y)^{\alpha_A}$ Pressure Driving Force: $f_{pA}(P) = ln\left(\frac{P}{P_{eq,A}}\right)$

 Heat sufficiently for kinetics but not high enough to possibly damage MH

Energy Balance:
$$\frac{dT}{dt} = \frac{hA}{M_{final}C_p} (T_{HT} - T) - \frac{1}{2} \frac{\Delta H_A}{100 * MW_HC_p} \frac{dy}{dt}$$

Accomplishments and Progress – MH Refueling Model

15

Accomplishments and Progress – MH Refueling Model

hA = 12400 W/K, T = 35°C

hA = 12400 W/K, T = 38°C

Bed Temp <70°C Reduced hydrogenation @ 1 h Bed Temp <200°C Full hydrogenation @ 36 min

Bed Temp exceeds 200°C Full hydrogenation @ 24 min

Learnings from MH Refueling Model

- H₂ adsorption is slow until there is a sharp increase in hydrogen uptake as the bed temperature exceeds 75°C
- Small changes in coolant temperature and heat transfer coefficient result in:
 - A potential spike in temperature beyond melting point or
 - Suppressed hydrogenation reaction
 - Balance of kinetics and thermodynamics
- Model helps understand the interplay between coolant heat transfer, reaction rate, feed pressure, and their impact on bed temperature, H₂ uptake, and heat removal

- Excel Spreadsheet Model
- Compare the cost of utilizing hydrogen carriers to directly transporting compressed hydrogen. Includes cost of:
 - -Acquiring the H₂ carrier
 - -Hydrogenation (and cooling requirements)
 - Transportation of the carrier to the point of use (truck or cargo ship options)
 - -Dehydrogenation (and heating/compression requirements)
 - -Return of spent carrier
- Inputs/Assumptions
 - -Initial temperature and pressure
 - -Loss per trip
 - -Carrier properties
 - Shipping capacity (8,550 gallons liquid organic hydrogen carrier vs. 300 kg gaseous H₂)

Accomplishments and Progress – Round Trip Efficiency Estimator

300

400

	А	В	С	D	Е	F	G	Н	1	J	к	L	М
1						Inp	uts						
2													
3	G	eneral Inpu	its					Tra	ansportation Inp	uts			
4	Hydrogen Carrier	MCH						Truck Capacity	300 k	g	gas hydro	gen	
5	Hydrogen Delivery Quantity	500	kg/day					Truck Capacity	8550 g	al			
6	Fraction Lost Per Trip	2	(100% indi	cates one	way carri	er)							
7	Dilution Factor	0	(Fraction H	12 Carrier)									
8	Transportation Method	Truck	(Truck or C	argo Ship)			Cargo Ship Capacity	35000 d	wt	hitis		
9	Initial/Final H2 Pressure	10	bar					Cargo Ship Capacity	3.5E+07 k	g	IILIC		nues.
10	Initial/Final H2 Temperature	20	°C										
11	Distance Travelled	50	miles								5()()	kα	H ₂ /da
12	Universal Gas Constant	8.314	J/mol/K									0	
13						ΠΟΙ	JES					مانم	c via
14										-1	JU I	nne	S VId
15													
16	Legend:										7%	ncc	<u>م</u>
17	Can be changed										270	033	63
18													
19	Hydro	ogenation I	nputs					Deh	ydrogenation In	puts			
20													
21								Recuperator Efficiency	0.7				
22	Fraction Unreacted	0.01						Fraction Unreacted	0.01				
23													
24	Descriptions In	outs Ca	rrier Prope	rties C	alculatio	ns Outp	uts	(+)	: 4				

Sample Results

H₂ carrier had lower daily operating cost due to savings in shipping

-	~	D	C	U	L	-	0		1	,	ĸ	L.	
						Ou	tputs						
		Ge	eneral Out	outs					SI	nipping Co	sts		
-													
	Hydrogen	Carrier		MCH	Methylcyd	lohexane/Tolu	iene Co	ost of ca	rrier			5032.5	\$
;	Hydrogen	Delivery C	Juantity	500			N	umber of	f trips from	carrier (1	L time purch	50	
1	Fraction L	ost Per Tri	p	2			Co	ost of rep	placement	carrier		100.65	\$
3	Dilution F	actor		0									
)	Transport	ation Met	hod	Truck			N	umber of	f trucks nee	eded		1	
0	Initial/Fin	al H2 Pres	ssure	10			Di	ays betw	een shipm	ents		3	days
1	Initial/Fin	al H2 Tem	perature	20									
2	Distance T	ravelled		50			Co	ost per s	hipment			\$85.77	
3							Co	ost per d	ay			\$28.19	
4													
5							Co	ompress	ed Hydroge	n shipme	nts		
6						$\mathbf{n} + \mathbf{r}$	🕂	umber of	f trucks nee	eded		2	
7						Juc	յսւ	a betw	een shipm	ents		0.6	
В						•							
9							Co	ost per s	hipment			\$85.77	
0							Co	ost per d	ay			\$142.95	
1													
2		Roui	nd Trip Effic	iency					E	nergy Nee	eds		
3							Ca	arrier					
4	Total carr	ier cost		\$86.79	/day		w	ith Reco	operation				
5	Total hydr	ogen cost		\$204.64	/day		То	tal heat	ing require	ments		247	kWh
6							То	tal heat	ing costs			\$14.89	/day
7													
В							Тс	otal cool	ing require	ments		-543.544	kWh
9							Тс	otal cool	ing cost			\$10.63	/day
0	Shipment	efficiency		5.07056	x fewer de	liveries							
1	Shipping o	ost differ	ence	\$86.57	/day		w	ithout R	ecooperati	on			
2							Тс	otal heat	ing require	ments		361	kWh
3	Heating er	nergy effic	iency	3.77	%		Тс	otal heat	ing costs			\$21.79	/day
4	Heating co	ost differe	nce	-\$0.58	/day								
5	Cooling ef	ficiency		-2.74	%		То	otal cool	ing require	ments		-543.544	kWh
6	Cooling co	, st differe	nce	\$0.28	/day		То	tal cool	ing cost			\$10.63	/day
7	5								-				
в							H	ydrogen					
9							Co	ompress	ion Energy			535.4	kWh
D							Co	ompress	ion Cost			\$35.87	\$/da
1							Co	ooling Er	nergy			-529.0	kWh
2							Co	ooling Co	ost			\$10.34	\$/da
3								-					
4													
5							Di	ispensin	g Energy				
6							Ex	pander	energy			-263.2	kWh
7							Ex	pander	cost			\$0.00	\$/da
в							Po	ossible s	avings via	recovered	energy	\$17.63	\$/da
9							H	eater ene	ergy			256.2	kWh
0							H	eater co	st.			\$15.48	\$/da
1									-			y 20.70	<i>, a</i>
				-									

Carrier Properties | Calculations Descriptions inputs

Outputs

Accomplishments and Progress – Vehicle Framework Graphical User Interface

Accomplishments and Progress – Model Website Analytics:

Most Recent Activity (January 1, 2022–March 31, 2022)

Activity every week; 83% of sessions were by new visitors

Accomplishments and Progress – Model Website Analytics: Web Flow (January 1, 2022–March 31, 2022)

Accomplishments and Progress – Model Website Analytics:

Locations (January 1, 2022–March 31, 2022)

Primary Dimension: Country City Continent Sub Con

Activity by city shows global interest in countries and regions including China, UK, Australia, Japan, South Korea, EU, and others

Accomplishments and Progress – Model Downloads

(through March 31, 2022)

MODEL	Total	Totals AMR2021	Additional through FY22 Q2
H ₂ Storage Tank Mass and Cost Model	517	298	219
MHAE Model	196	87	109
MHFE Model	254	131	123
Vehicle Simulator Framework Model	376	214	162
CH System Design Stand-Alone	214	59	155
Adsorbent System Design Stand-Alone	199	69	130
MH System Design by Usable H ₂	151	21	130
MH System Design by System Volume	140	23	117

Most downloads are for *Tank Mass and Cost Model* and *Vehicle Simulator Model*

Organization	Relations hip	Туре	Responsibility
NREL	Team Member	National Lab	Update website and framework
SRNL	Team Member	National Lab	Adsorbent and compressed gas modeling
PNNL	Team Member	National Lab	Chemical hydrogen and metal hydride modeling
HyMARC— Sandia National Laboratories	Material Research	National Lab/ Collaboration	Metal hydride data
HyMARC— Lawrence Berkeley National Laboratory	Material Research	National Lab/ Collaboration	Metal hydride data

Deliv	verable	Due
FY22-Q1	Complete and submit two manuscripts on the results of the project scope. Topics include Tankinator model, Rev. 4 and Adsorbents.	Tankinator complete, Adsorbents in review
FY22-Q2	Integrate HD/MD models into the Framework, including Adsorbents, MH, and chemical hydrogen storage. Exercise models, evaluate and validate results. Upload to website for general use.	By AMR
FY22-Q3	Develop and integrate an agricultural or mining vehicle duty cycle into the Vehicle Framework and demonstrate its use with Adsorbents, MH, and chemical hydrogen storage.	6/30/2022
FY22-Q4	In collaboration with Argonne National Laboratory, develop and integrate a liquid hydrogen storage system into the Vehicle Framework for light/medium/heavy-duty vehicles.	9/30/2022

Summary

. . .

Relevance	 Provide materials-based hydrogen storage researchers with models and materials requirements to assess their material's performance over a range of vehicular applications.
Approach	 Improve stand-alone model and framework utility by bridging the gap between the information generated by the materials researcher and the DOE Technical Targets.
Technical Accomplishments and Progress	 Tankinator is being expanded to increase its utility and a MH refueling modeling is being developed. A refueling model has been developed for metal hydrides to better understand impacts of heat transfer on refueling kinetics. A round-trip efficiency estimator has been developed to compare shipping costs between gaseous H₂ and hydrogen carriers. Stand-alone tools and framework are being expanded beyond light-duty vehicles to medium- and heavy-duty vehicles Stand-alone tools and framework have been used to evaluate materials for HyMARC and University of Michigan to help better understand the benefits (or not) of new materials. Submitted one manuscript (with an additional one under review) to the <i>International Journal of Hydrogen Energy</i>.
Collaborations	 Project team includes NREL, SRNL, and PNNL. Consultants from industry participate in team meetings and provide input. Material developers from HyMARC, University of Michigan, and other academic institutions have provided new material properties.
Proposed Future Research	 Expand the use of models by demonstrating their utility with other storage materials and vehicle class options and compare to storage using liquid H₂ and gaseous H₂.

.

Technical Backup and Additional Information

Technology Transfer Activities

- Maintaining model web portal on HyMARC site.
- Continued collaboration and outreach with industry and university partners to expand the application of the models.

H2 Storage models are accessible through the HyMARC/System Models site.

https://www.hymarc.org/models.html

Tankinator: Hydrogen Tank Mass and Cost Estimator

The Hydrogen Tank Mass and Cost Estimator, or "Tankinator", is used to cross-compare various pressure vessel types to estimate gravimetric, volumetric, and

Publications and Presentations

Brooks, Kriston, David Tamburello, Sam Sprik, and Matthew Thornton. 2020. "Design Tool for Estimating Metal Hydride Storage System Characteristics for Light-Duty Fuel Cell Vehicles." *International Journal of Hydrogen Energy*, Volume 45, Issue 46, 24917–24927.

Grady, Carina, Scott McWhorter, Martin Sulic, Samuel J. Sprik, Matthew J. Thornton, Kriston P. Brooks, and David A. Tamburello, "Design Tool for Estimating Adsorbent Hydrogen Storage System Characteristics for Light-Duty Fuel Cell Vehicles," Submitting to the *International Journal of Hydrogen Energy*, Date:TBD, Currently in review.

Klymyshyn, Nickolas, Kriston Brooks, and Nathan Barrett, "Tankinator: A Hydrogen Fuel Tank Characteristics Estimation Tool," Submitted to the *International Journal of Hydrogen Energy*, January 2022, Currently awaiting review.